Skip to main content
Log in

Synthesis and electromagnetic wave absorption properties of three-dimensional nano-flower structure of MoS2/polyaniline nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Three-dimensional nano-flower structure of MoS2/PANI nanocomposites were successfully fabricated via the in situ polymerization method. The best reflection loss could reach − 50.57 dB at 5.04 GHz with the thickness of 5.0 mm and the efficient absorption bandwidth (RL ≤ − 10 dB) was about 2.08 GHz when the mass ratio of MoS2/PANI was 5:5. Additionally, in the case of satisfying effective electromagnetic wave absorption, other two effective and even wider absorption bandwidth could achieve 4.96 GHz (13.04–18.00 GHz) and 3.68 GHz (8.08–11.76 GHz) at the thickness of 2.0 mm and 3.0 mm, respectively. According to the electromagnetic parameters’ analyses, the more multi-interfaces introduced by the construction of such three-dimensional nano-flower structure, the more multi-polarization and reflection could be occurred, the better electromagnetic wave absorption could be achieved. The results indicated that MoS2/PANI nanocomposites were the promising electromagnetic wave absorbing materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X.J. Zhang, J.Q. Zhu, P.G. Yin et al., Adv. Func. Mater. 28, 1800761 (2018)

    Article  Google Scholar 

  2. B. Wen, M. Cao, M. Lu et al., Adv. Mater. 26, 3357 (2014)

    Article  Google Scholar 

  3. J. Liu, H.B. Zhang, R. Sun et al., Adv. Mater. 29, 1702367 (2017)

    Article  Google Scholar 

  4. L. Yu, X. Lan, C. Wei et al., J. Alloy. Compd. 748, 111 (2018)

    Article  Google Scholar 

  5. S. Umrao, T.K. Gupta, S. Kumar et al., ACS Appl. Mater. Interfaces. 7, 19831 (2015)

    Article  Google Scholar 

  6. H. Chen, Z. Huang, Y. Huang et al., Carbon 124, 506 (2017)

    Article  Google Scholar 

  7. Z. Chen, C. Xu, C. Ma, W. Ren, H.M. Cheng, Adv. Mater. 25, 1296 (2013)

    Article  Google Scholar 

  8. G. Wang, X. Peng, L. Yu, G. Wan, S. Lin, Y. Qin, J. Mater. Chem. A 3, 2734 (2015)

    Article  Google Scholar 

  9. J. Ma, X. Wang, W. Cao et al., Chem. Eng. J. 339, 487 (2018)

    Article  Google Scholar 

  10. Z. Jia, B. Wang, A. Feng, et al., Ceram. Int. 45, 15854 (2019)

    Article  Google Scholar 

  11. Z. Jia, B. Wang, A. Feng, et al., J. Alloys Compd. 799, 216 (2019)

    Article  Google Scholar 

  12. J. Li, J. Ma, S. Chen, Y. Huang, J. He, Mater. Sci. Eng. C 89, 25 (2018)

    Article  Google Scholar 

  13. G. Wu, Y. Cheng, Z. Yang et al., Chem. Eng. J. 333, 519 (2018)

    Article  Google Scholar 

  14. L. Kong, X. Yin, H. Xu et al., Carbon 145, 61 (2019)

    Article  Google Scholar 

  15. S.S.S. Afghahi, A. Mirzazadeh, M. Jafarian, Y. Atassi, Ceram. Int. 42, 9697 (2016)

    Article  Google Scholar 

  16. X. Liang, X. Zhang, W. Liu, D. Tang, B. Zhang, G. Ji, J. Mater. Chem. C 4, 6816 (2016)

    Article  Google Scholar 

  17. D. Zhang, J. Chai, J. Cheng et al., Appl. Surf. Sci. 462, 872 (2018)

    Article  Google Scholar 

  18. D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, M.C. Hersam, ACS Nano 8, 1102 (2014)

    Article  Google Scholar 

  19. M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, H. Zhang, Nat. Chem. 5, 263 (2013)

    Article  Google Scholar 

  20. B. Zhao, W. Zhao, G. Shao, B. Fan, R. Zhang, ACS Appl. Mater. Interfaces. 7, 12951 (2015)

    Article  Google Scholar 

  21. M.Q. Ning, M.M. Lu, J.-B. Li et al., Nanoscale 7, 15734 (2015)

    Article  Google Scholar 

  22. Y. Li, C.Y. Xu, J.Y. Wang, L. Zhen, Sci. Rep. 4, 7186 (2014)

    Article  Google Scholar 

  23. Q. Jia, X. Huang, G. Wang, J. Diao, P. Jiang, J. Phys. Chem. C 120, 10206 (2016)

    Article  Google Scholar 

  24. D. Zhang, Y. Jia, J. Cheng et al., J. Alloy. Compd. 758, 62 (2018)

    Article  Google Scholar 

  25. Y. Wang, D. Chen, X. Yin, P. Xu, F. Wu, M. He, ACS Appl. Mater. Interfaces. 7, 26226 (2015)

    Article  Google Scholar 

  26. X.J. Zhang, S. Li, S.W. Wang et al., J. Phys. Chem. C 120, 22019 (2016)

    Article  Google Scholar 

  27. H. Lv, Z. Yang, P.L. Wang et al., Adv. Mater. 30, 1706343 (2018)

    Article  Google Scholar 

  28. P. Zhang, X. Han, L. Kang, R. Qiang, W. Liu, Y. Du, RSC Advances 3, 12694 (2013)

    Article  Google Scholar 

  29. M. Raghu, K.Y. Kumar, S. Rao, T. Aravinda, B. Prasanna, M. Prashanth, Polym. Bull. 75, 4359 (2018)

    Article  Google Scholar 

  30. Y. Yang, L. Xia, T. Zhang et al., Chem. Eng. J. 352, 510 (2018)

    Article  Google Scholar 

  31. M.M. Lu, M.S. Cao, Y.-H. Chen et al., ACS Appl. Mater. Interfaces 7, 19408 (2015)

    Article  Google Scholar 

  32. Z. Zhao, S. Xu, Z. Du, C. Jiang, X. Huang, ACS Sustain. Chem. Eng. 7, 7183 (2019)

    Google Scholar 

  33. P. Xu, X. Han, X. Liu, B. Zhang, C. Wang, X. Wang, Mater. Chem. Phys. 114, 556 (2009)

    Article  Google Scholar 

  34. X. Zhang, G. Ji, W. Liu et al., Nanoscale 7, 12932 (2015)

    Article  Google Scholar 

  35. M. Cao, X. Wang, W. Cao, X. Fang, B. Wen, J. Yuan, Small 14, 1800987 (2018)

    Article  Google Scholar 

  36. M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, J. Yuan, Carbon 48, 788 (2010)

    Article  Google Scholar 

  37. W.Q. Cao, X.X. Wang, J. Yuan, W.Z. Wang, M.-S. Cao, J. Mater. Chem. C 3, 10017 (2015)

    Article  Google Scholar 

  38. B. Zhao, X. Guo, W. Zhao et al., Nano Res. 10, 331 (2017)

    Article  Google Scholar 

  39. X. Zhang, G. Ji, W. Liu et al., J. Mater. Chem. C 4, 1860 (2016)

    Article  Google Scholar 

  40. J. Pan, X. Sun, T. Wang et al., Appl. Surf. Sci. 457, 271 (2018)

    Article  Google Scholar 

  41. W.L. Zhang, D. Jiang, X. Wang, B.N. Hao, Y.D. Liu, J. Liu, J. Phys. Chem. C 121, 4989 (2017)

    Article  Google Scholar 

  42. J. Dai, H. Yang, B. Wen, H. Zhou, L. Wang, Y. Lin, Appl. Surf. Sci. 479, 1226 (2019)

    Article  Google Scholar 

  43. W. Zhang, X. Zhang, H. Wu, H. Yan, S. Qi, J. Alloy. Compd. 751, 34 (2018)

    Article  Google Scholar 

  44. Y. Lin, J. Dong, H. Zong, B. Wen, H. Yang, ACS Sustain. Chem. Eng. 6, 10011 (2018)

    Article  Google Scholar 

  45. W. Qin, T. Chen, L. Pan et al., Electrochim. Acta 153, 55 (2015)

    Article  Google Scholar 

  46. S. Kang, S. Qiao, Z. Hu, J. Yu, Y. Wang, J. Zhu, J. Mater. Sci. 54, 6410 (2019)

    Article  Google Scholar 

  47. T. Wu, Y. Liu, X. Zeng et al., ACS Appl. Mater. Interfaces 8, 7370 (2016)

    Article  Google Scholar 

  48. H. Wu, G. Wu, Y. Ren, L. Yang, L. Wang, X. Li, J. Mater. Chem. C 3, 7677 (2015)

    Article  Google Scholar 

  49. L. Zhu, X. Zeng, X. Li, B. Yang, R. Yu, J. Magn. Magn. Mater. 426, 114 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lizhong Bai or Yaqing Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, D., Bai, L., Cheng, S. et al. Synthesis and electromagnetic wave absorption properties of three-dimensional nano-flower structure of MoS2/polyaniline nanocomposites. J Mater Sci: Mater Electron 30, 13948–13956 (2019). https://doi.org/10.1007/s10854-019-01739-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01739-6

Navigation