Skip to main content
Log in

Colossal dielectric constant with enhanced magnetization in the La3+ and Ca2+ co-doped BiFeO3 nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present paper explores of the lanthanum and calcium insertion effect on the physico-chemical properties of the Bi0.8(La0.8Ca0.2)0.2FeO3 (LCBFO-8) Sol–Gel made multiferroic compound. The LCBFO-8 compound crystallized in a rhombohedral distorted structure with the R3c space group. The Morphological investigation confirmed the nanosize criteria of the examined nanoparticles with an average particle size less than 50 nm. Notably, the studied compound shows a colossal dielectric constant, low loss tangent tg(delta) values, an enhanced magnetization, and a reduction of the Curie transition temperature to 395 K, which confirms well the high utility of such compound for energy storage applications. At low and high temperatures, two dielectric relaxations have been detected in the frequency dependence curves of the dielectric constant and the Modulus imaginary part plots at low and high-temperature ranges. The symmetric and asymmetric dielectric parameters α and β have been collected from the adjustment of the M″ based on the Havriliak–Negami (H–N) formalism. According to their values, it can be concluded that the high-temperature relaxation is a Cole–Cole-type dielectric relaxation, while the Cole–Davidson model fits the high temperature well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. N.A. Spaldin, M. Fiebig, The renaissance of magnetoelectric multiferroics. Science 309, 391–392 (2005)

    Article  CAS  Google Scholar 

  2. R.L. Gao, Q.M. Zhang, Z.Y. Xu et al., A comparative study on the structural, dielectric and multiferroic properties of Co0.6Cu0.3Zn0.1Fe2O4/Ba0.9Sr0.1Zr0.1-Ti0.9O3 composite ceramics. Composites B 166, 204–212 (2019)

    Article  CAS  Google Scholar 

  3. S.J. Pearton, W.H. Heo, M. Ivill, D.P. Norton, T. Steiner, magnetic semiconducting oxides. Semicond. Sci. Technol. 19, 59–74 (2004)

    Article  CAS  Google Scholar 

  4. S.F. Mansour, N.G. Imam, S. Goda, M.A. Abdo, Constructive coupling between BiFeO3 and CoFe2O4; promising magnetic and dielectric properties. J Mater. Res. Technol. 9, 1434–1446 (2020)

    Article  CAS  Google Scholar 

  5. F. Huang, X. Xu, X. Lu, M. Zhou, H. Sang, J. Zhu, The exchange bias behavior of BiFeO3 nanoparticles with natural core-shell structure. Sci. Rep. 8, 2311 (2018)

    Article  CAS  Google Scholar 

  6. R.L. Gao, X.F. Qin, Q.M. Zhang, Z.Y. Xu, Z.H. Wang, C.L. Fu, G. Chen, X.L. Deng, W. Cai, Enhancement of magnetoelectric properties of (1-x) Mn0.5Zn0.5Fe2O4 – x Ba0.85Sr0.15Ti0.9Hf0.1O3 composite ceramics. J. Alloys Compd. 795, 501–512 (2019)

    Article  CAS  Google Scholar 

  7. L. Xu, Z. Chu, H. Wang, L. Cai, Z. Tu, H. Liu, C. Zhu, H. Shi, D. Pan, J. Pan, X. Fei, electrostatically assembled multilayered films of biopolymer enhanced nanocapsules for on-demand drug release. ACS Appl. Bio Mater. 2, 3429–3438 (2019)

    Article  CAS  Google Scholar 

  8. L. Xu, H. Wang, Z. Chu, L. Cai, H. Shi, C. Zhu, D. Pan, J. Pan, X. Fei, Y. Lei, Temperature-responsive multilayer films of micelle-based composites for controlled release of a third-generation EGFR inhibitor. ACS Appl. Polym. Mater. 2, 741–750 (2020)

    Article  CAS  Google Scholar 

  9. L. Xu, X. Zhang, Z. Chu, H. Wang, Y. Li, X. Shen, L. Cai, H. Shi, C. Zhu, J. Pan, D. Pan, Temperature-responsive multilayer films based on block copolymer-coated silica nanoparticles for long-term release of Favipiravir. ACS Appl. Nano Mater. 4, 14014–14025 (2021)

    Article  CAS  Google Scholar 

  10. A.V. Meer, R. Ganesan, T. Gnanasekaran, Studies on the thermal stability of BiFeO3 and the phase diagram of Bi-Fe-O system. J. Alloys Compd. 790, 1108–1118 (2019)

    Article  CAS  Google Scholar 

  11. S.V. Kiselev, R.P. Ozerov, G.S. Zhlanov, Detection of magnetic order in ferroelectric BiFeO3 by neutron diffraction. Sov. Phys. Dokl. 7, 742 (1963)

    Google Scholar 

  12. M.M. Kumar, V.R. Palkar, K. Srinivas, S.V. Suryanarayana, Ferroelectricity in a pure BiFeO3 ceramic. Appl. Phys. Lett. 76, 2764–2766 (2000)

    Article  CAS  Google Scholar 

  13. G.L. Song, Y.C. Song, J. Su, X.H. Song, N. Zhang, T.X. Wang, F.G. Chang, Crystal structure refinement, ferroelectric and ferromagnetic properties of Ho3+ modified BiFeO3 multiferroic. J. Alloys Compd. 696, 503–509 (2017)

    Article  CAS  Google Scholar 

  14. V.A. Khomchenko, D.A. Kiselev, I.K. Bdikin, V.V. Shvartsman, P. Borisov, W. Kleemann, J.M. Vieira, A.L. Kholkin, Crystal structure and multiferroic properties of Gd-substituted BiFeO3. Appl. Phys. Lett. 93, 262905 (2008)

    Article  CAS  Google Scholar 

  15. F. Yan, G. Zhao, N. Song, Sol-gel preparation of La-doped bismuth ferrite thin film and its low-temperature ferromagnetic and ferroelectric properties. J. Rare Earths 31, 60–64 (2013)

    Article  CAS  Google Scholar 

  16. D. Wang, M. Wang, F. Liu, Y. Cui, Q. Zhao, H. Sun, H. Jin, M. Cao, Sol-gel synthesis of Nd-doped BiFeO3 multiferroic and its characterization. Ceram. Int. 41, 8768–8772 (2015)

    Article  CAS  Google Scholar 

  17. T.K. Lin, C.Y. Shen, C.C. Kao, C.F. Chang, H.W. Chang, C.R. Wang, C.S. Tu, Structural evolution, ferroelectric, and nanomechanical properties of Bi1-xSmxFeO3 films (x =0.05–0.16) on glass substrates. J. Alloys Compd. 787, 397–406 (2019)

    Article  CAS  Google Scholar 

  18. L.H. Jin, J.Z. Lu, D.P. Song, B.B. Yang, X.B. Zhu, Modified electrical properties of chemical solution deposited epitaxial BiFeO3 thin films by Mn substitution. Ceram. Int. 44, 11658–11664 (2018)

    Article  CAS  Google Scholar 

  19. A. Marzouki, H. Harzali, V. Loyau, P. Gemeiner, K. Zehani, B. Dkhil, L. Bessais, A. Megriche, Large magnetoelectric response and its origin in bulk Co-doped BiFeO3 synthesized by a stirred hydrothermal process. Acta Mater. 145, 316–321 (2018)

    Article  CAS  Google Scholar 

  20. S. Ameer, K. Jindal, S. Sharma, P.K. Jha, M. Tomar, V. Gupta, Structural, morphological and optical properties of BiFe0.99Cr0.01O3 thin films. Vacuum 158, 166–171 (2018)

    Article  CAS  Google Scholar 

  21. A. Tamilselvan, S. Balakumar, M. Sakar, C. Nayek, P. Murugavel, K.S. Kumar, Role of oxygen vacancy and Fe-O-Fe bond angle in compositional, magnetic, and dielectric relaxation on Eu-substituted BiFeO3 nanoparticles. Dalton Trans. 43, 5731–5738 (2014)

    Article  CAS  Google Scholar 

  22. B. Yotburut, P. Thongbai, T. Yamwong, S. Maensiri, Electrical and nonlinear current-voltage characteristics of La-doped BiFeO3 ceramics. Ceram Int. 43, 5616–5627 (2017)

    Article  CAS  Google Scholar 

  23. P. Lin, S. Cui, X. Zeng, H. Huang, S. Ke, Giant dielectric response and enhanced thermal stability of multiferroic BiFeO3. J. Alloys Compd. 600, 118–124 (2014)

    Article  CAS  Google Scholar 

  24. S. Sharma, M. Kumar, J.M. Siqueiros, O.R. Herrera, Phase evolution, magnetic study and evidence of spin-two phonon coupling in Ca modified Bi0.80La0.20FeO3 ceramics. J. Alloys Compd. 827, 154223 (2020)

    Article  CAS  Google Scholar 

  25. A. Benali, A. Souissi, M. Bejar, E. Dhahri, M.F.P. Graça, M.A. Valente, Dielectric properties and alternating current conductivity of sol–gel made La0.8Ca0.2FeO3 compound. Chem. Phys. Lett. 637, 7–12 (2015)

    Article  CAS  Google Scholar 

  26. L.B. Kong, Y.S. Shen, Gas-sensing property and mechanism of CaxLa1−xFeO3 ceramics. Sens. Actuators B 30, 217–221 (1996)

    Article  CAS  Google Scholar 

  27. E.M. Benali, A. Benali, M. Bejar, E. Dhahri, M.P.F. Graca, M.A. Valente, B.F.O. Costa, Effect of synthesis route on structural, morphological, Raman, dielectric, and electric properties of La0.8Ba0.1Bi0.1FeO3. J. Mater. Sci. 31, 3197–3214 (2020)

    CAS  Google Scholar 

  28. A. Bougoffa, A. Benali, M. Bejar, E. Dhahri, M.P.F. Graça, M.A. Valente, L. Bessais, B.O.F. Costa, Mg-substitution effect on microstructure, dielectric relaxation and conduction phenomenon of Fe based perovskite nanomaterials. J. Alloys Compd. 856, 157425 (2021)

    Article  CAS  Google Scholar 

  29. R.A. Young, The Rietveld Method (Oxford University Press, New York, 1993)

    Google Scholar 

  30. M.M. Costa, G.F.M. Pires Junior, A.S.B. Sombra, Dielectric and impedance properties’ studies of the of lead doped (PbO)-Co2Y type hexaferrite (Ba2Co2Fe12O22 (Co2Y)). Mater. Chem. Phys. 123, 35 (2010)

    Article  CAS  Google Scholar 

  31. M.P.F. Graça, M.G.F. da Silva, M.A. Valente, NaNbO3 crystals dispersed in a B2O3 glass matrix–structural characteristics versus electrical and dielectrical properties. Solid State Sci. 11, 570–577 (2009)

    Article  CAS  Google Scholar 

  32. M.S. Bernardo, T. Jardiel, M. Peiteado, F.J. Mompean, M. Garcia-Hernandez, M.A. Garcia, M. Villegas, A.C. Caballero, Intrinsic compositional inhomogeneities in bulk Ti-doped BiFeO3: microstructure development and multiferroic properties. Chem. Mater. 25, 1533 (2013)

    Article  CAS  Google Scholar 

  33. J.G. Fisher, S.H. Jang, M.S. Park, H. Sun, S.H. Moon, J.S. Lee, A. Hussain, The Effect of niobium doping on the electrical properties of 0.4(Bi0.5K0.5)TiO3–0.6BiFeO3 lead-free piezoelectric ceramics. J. Mater. 8, 8183–8194 (2015)

    Article  CAS  Google Scholar 

  34. N.V. Dang, T.D. Thanh, L.V. Hong, V.D. Lam, T.L. Phan, Structural, optical and magnetic properties of polycrystalline BaTi1-xFexO3 ceramics. J. App. Phys. 110, 043914 (2011)

    Article  CAS  Google Scholar 

  35. S.K. Pradhan, B.K. Roul, Effect of Gd doping on structural, electrical and magnetic properties of BiFeO3 electroceramic. J. Phys. Chem. Solids 72, 1180–1187 (2011)

    Article  CAS  Google Scholar 

  36. A. Benali, M. Bejar, E. Dhahri, M.P.F. Graça, M.A. Valente, E.K. Hlil, B.F.O. Costa, Structural, dielectric relaxation and magnetic features of the (La0.8Ca0.2)0.9Bi0.1Fe1−yTiyO3 (y = 00 and 01) nanoparticles. J. Alloys Compd. 876, 160222 (2021)

    Article  CAS  Google Scholar 

  37. A. Bougoffa, A. Benali, M. Bejar, E. Dhahri, M.P.F. Graça, M.A. Valente, B.F.O. Costa, Costa, Investigation of temperature and frequency dependence of the dielectric properties of multiferroic (La0.8Ca0.2)0.4Bi0.6FeO3 nanoparticles for energy storage application. RSC Adv. 12, 6907–6917 (2022)

    Article  CAS  Google Scholar 

  38. M.K. Singh, H.M. Jang, S. Ryu, M.-H. Jo, Polarized Raman scattering of multiferroic BiFeO3 epitaxial films with rhombohedral R3c symmetry. Appl. Phys. Lett. 88, 042907 (2006)

    Article  CAS  Google Scholar 

  39. R. Haumont, J. Kreisel, P. Bouvier, F. Hippert, Phonon anomalies and the ferroelectric phase transition in multiferroic BiFeO3. Phys. Rev. B 73, 132101 (2006)

    Article  CAS  Google Scholar 

  40. A. Benali, B.M.G. Melo, P.R. Prezas, M. Bejar, E. Dhahri, M.A. Valente, M.P.F. Graça, B.A. Nogueira, B.F.O. Costa, Structural, morphological, Raman and ac electrical properties of the multiferroic sol-gel made Bi0.8Er0.1Ba0.1Fe0.96Cr0.02Co0.02O3 material. J. Alloys Compd. 775, 304–315 (2019)

    Article  CAS  Google Scholar 

  41. E.V. Ramana, A. Mahajan, M.P.F. Graca, A. Srinivas, M.A. Valente, Ferroelectric and magnetic properties of magnetoelectric (Na0.5Bi0.5)TiO3-BiFeO3 synthesized by acetic acid assisted sol-gel method. J. Eur. Ceram. Soc. 34, 4201–4211 (2014)

    Article  CAS  Google Scholar 

  42. P. Hermet, M. Goffinet, J. Kreisel, P. Ghosez, Raman and infrared spectra of multiferroic bismuth ferrite from first principles. Phys. Rev. B 75, 220102 (2007)

    Article  CAS  Google Scholar 

  43. P.C. Sati, M. Kumar, S. Chhoker, M. Jewariya, Influence of Eu substitution on structural, magnetic, optical and dielectric properties of BiFeO3 multiferroic ceramics. Ceram. Int. 41, 2389–2398 (2015)

    Article  CAS  Google Scholar 

  44. L.Y. Chang, C.S. Tu, P.Y. Chen, C.S. Chen, V.H. Schmidt, H.H. Wei, D.J. Huang, T.S. Chan, Raman vibrations and photovoltaic conversion in rare earth doped (Bi0.93RE0.07)FeO3 (RE = Dy, Gd, Eu, Sm) ceramics. Ceram. Int. 42, 834–842 (2016)

    Article  CAS  Google Scholar 

  45. J.K. Kim, S.S. Kim, W.J. Kim, Sol–gel synthesis and properties of multiferroic BiFeO3. Mater. Lett. 59(29–30), 4006–4009 (2005)

    Article  CAS  Google Scholar 

  46. S.V. Vijayasundaram, G. Suresh, R.A. Mondal, R. Kanagadurai, Substitution-driven enhanced magnetic and ferroelectric properties of BiFeO3 nanoparticles. J. Alloy. Compd. 658, 726–731 (2016)

    Article  CAS  Google Scholar 

  47. W. Mao, X. Wang, L. Chu, Y. Zhu, Q. Wang, J. Zhang, J. Yang, X. Li, W. Huang, Simultaneous enhancement of magnetic and ferroelectric properties in Dy and Cr co-doped BiFeO3 nanoparticles. Phys. Chem. Chem. Phys. 18, 6399–6405 (2016)

    Article  CAS  Google Scholar 

  48. X.Q. Zhang, Y. Sui, X.J. Wang, Y. Wang, Z. Wang, Effect of Eu substitution on the crystal structure and multiferroic properties of BiFeO3. J. Alloys Compd. 507, 157–161 (2010)

    Article  CAS  Google Scholar 

  49. S.B. Amor, A. Benali, M. Bejar, E. Dhahri, K. Khirouni, M.A. Valente, M.P.F. Graça, F. Al-Turjman, J. Rodriguez, A. Radwan, Modulation of magnetism and study of impedance and alternating current conductivity of Zn0.4Ni0.6Fe2O4 spinel ferrite. J. Mol. Struct. 1184, 298–304 (2019)

    Article  CAS  Google Scholar 

  50. P. Kum-onsa, N. Chanlek, P. Thongbai, P. Srepusharawoot, Effect of complex defects on the origin of giant dielectric properties of Mg2+−doped BiFeO3 ceramics prepared by a precipitation method. Ceram. Int. 46, 25017–25023 (2020)

    Article  CAS  Google Scholar 

  51. B. Yotburut, P. Thongbai, T. Yamwong, S. Maensiri, Electrical and nonlinear current-voltage characteristics of La-doped BiFeO3 ceramics. Ceram. Int. 43, 5616–5627 (2017)

    Article  CAS  Google Scholar 

  52. S. Ke, H. Fan, H. Huang, Dielectric relaxation in A2FeNbO6 (A = Ba, Sr, and Ca) perovskite ceramics. J. Electroceram. 22(1–3), 252–256 (2007)

    Google Scholar 

  53. S. Ke, H. Huang, H. Fan, H.L.W. Chan, L.M. Zhou, Colossal dielectric response in barium iron niobate ceramics obtained by different precursors. Ceram. Int. 34(4), 1059–1062 (2008)

    Article  CAS  Google Scholar 

  54. J. Jumpatam, P. Thongbai, T. Yamwong, S. Maensiri, Effects of Bi3+ doping on microstructure and dielectric properties of CaCu3Ti4O12/CaTiO3 composite ceramics. Ceram. Int. 41(Suppl 1), S498–S503 (2015)

    Article  CAS  Google Scholar 

  55. S. Komine, E. Iguchi, Relation of conduction changes and magnetic properties in Nd1-xPbxMnO3 (010 ≤ x ≤ 025). J. Phys. Condens. Matter 16, 1061–1073 (2004)

    Article  CAS  Google Scholar 

  56. A.R. Makhdoom, M.J. Akhtar, R.T.A. Khan, M.A. Hasan, F. Sher, A.N. Fitch, Association of microstructure and electric heterogeneity in BiFeO3. Mater. Chem. Phys. 143, 256–262 (2013)

    Article  CAS  Google Scholar 

  57. E. Markiewicz, B. Hilczer, M. Błaszyk, A. Pietraszko, E. Talik, Dielectric properties of BiFeO3 ceramics obtained from mechanochemically synthesized nanopowders. J. Electroceram. 27, 154–161 (2011)

    Article  CAS  Google Scholar 

  58. S. Hunpratub, P. Thongbai, T. Yamwong, R. Yimnirun, S. Maensiri, Dielectric relaxations and dielectric response in multiferroic BiFeO3 ceramics. Appl. Phys. Lett. 94(062904), 1–3 (2009)

    Google Scholar 

  59. F. Kremer, A. Schonhals, Broadband Dielectric Spectroscopy (Springer, Berlin, 2003)

    Book  Google Scholar 

  60. P. Debye, Polar Molecules (Dover, New York, 1929)

    Google Scholar 

  61. K. Cole, R. Cole, Dispersion and absorption in dielectrics. I: Alternating current characteristics. J. Chem. Phys. 9, 341–352 (1941)

    Article  CAS  Google Scholar 

  62. D. Davidson, R. Cole, Dielectric relaxation in glycerol, propylene glycol, and n-propanol. J. Chem. Phys. 19, 1484–1490 (1951)

    Article  CAS  Google Scholar 

  63. T.S. Ge, Y.H. Duan, Variation of the grain boundary relaxation strength with temperature for aluminum bicrystals. Phys. Status Solidi A 140, 411–419 (1993)

    Article  Google Scholar 

  64. S. Kamba, D. Nuzhnyy, M. Savinov, J. Šebek, J. Petzelt, Infrared and terahertz studies of polar phonons and magnetodielectric effect in multiferroic BiFeO3 ceramics. Phys. Rev. B 75, 024403 (2007)

    Article  CAS  Google Scholar 

  65. S. Hunpratub, P. Thongbai, T. Yamwong, R. Yimniru, S. Maensiri, Dielectric relaxations and dielectric response in multiferroic BiFeO3 ceramics. Appl. Phys. Lett. 94, 062904 (2009)

    Article  CAS  Google Scholar 

  66. J.L. Zhanga, P. Zheng, C.L. Wang, M.L. Zhao, J.C. Li, J.F. Wang, Dielectric dispersion of CaCu3Ti4O12 ceramics at high temperatures. Appl. Phys. Lett. 87, 142901 (2005)

    Article  CAS  Google Scholar 

  67. S.F. Shao, J.L. Zhanga, P. Zheng, W.L. Zhong, C.L. Wang, Microstructure and electrical properties of CaCu3Ti4O12 ceramics. J. Appl. Phys. 99, 084106 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R184), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. Authors would like as well to acknowledge the financial support from FCT – Fundação para a Ciência e a Tecnologia, I.P., within the projects No. UID/04564/2020 and UID/CTM/50025/2013 I3N. Access to TAIL-UC facility funded under QREN-Mais Centro Project No. ICT_2009_02_012_1890 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

AB: Investigation Conceptualization Writing, Formal analysis, Original Draft Validation. EMB: Investigation Conceptualization Writing, Formal analysis, Original Draft Validation. SG: Conceptualization, Formal analysis, Writing – review & editing. ME: Conceptualization, Formal analysis, Writing – review & editing. ED: Validation Writing, Review and editing. MPFG: Validation Writing, Review and editing. MAV: Validation Writing, Review and editing. BFOC: Validation Writing, Review and editing.

Corresponding author

Correspondence to A. Benali.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Research involving human rights

This article does not contain any studies involving human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benali, A., Benali, E.M., Gouadria, S. et al. Colossal dielectric constant with enhanced magnetization in the La3+ and Ca2+ co-doped BiFeO3 nanoparticles. J Mater Sci: Mater Electron 33, 16236–16250 (2022). https://doi.org/10.1007/s10854-022-08517-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08517-x

Navigation