Skip to main content

Advertisement

Log in

Improved energy storage and electrocaloric properties of lead-free Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramic

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lead-free Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) ceramic powders were synthesized using the sol–gel method. The ceramics thickness was reduced to achieve high-energy storage and large electrocaloric effect in bulk ceramics. Dielectric, ferroelectric, energy storage, and electrocaloric properties were investigated for BCZT ceramic with 400 µm. Here, pure crystalline structure and homogenous microstructure were identified by XRD analysis and SEM measurements, respectively. The dielectric measurements revealed a maximum dielectric constant associated with ferroelectric–paraelectric phase transition. The maximum of \(\varepsilon^{\prime}_{{\text{r}}}\) was 17841, around 352 K. Furthermore, the BCZT ceramic exhibited improved energy storage and electrocaloric properties. A high recoverable energy density Wrec of 0.24 J/cm3 and a total energy density Wtotal of 0.27 J/cm3 with an efficiency coefficient of ~ 88% at 423 K under an electric field of 55 kV/cm were obtained. Besides, The maximum value of ΔT = 2.32 K, the electrocaloric responsivity ζ = 0.42 K mm/kV, the refrigeration capacity RC = 4.59 J/kg and the coefficient of performance COP = 12.38 were achieved around 384 K under 55 kV/cm. The total energy density Wtotal and the temperature change ΔT were also calculated by exploiting the Landau–Ginzburg–Devonshire (LGD) theory. The theoretical results matched the experimental findings. These results suggest that the synthesized BCZT ceramic with reduced thickness could be a promising candidate for energy storage and electrocaloric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Y. Xu, Ferroelectric materials and their applications (Elsevier, New York, 2013)

    Google Scholar 

  2. R.E. Cohen, Origin of ferroelectricity in perovskite oxides. Nature 358(6382), 136–138 (1992). https://doi.org/10.1038/358136a0

    Article  CAS  Google Scholar 

  3. S. Zhang, F. Li, High performance ferroelectric relaxor-PbTiO3 single crystals: Status and perspective. J. Appl. Phys. 111(3), 031301 (2012). https://doi.org/10.1063/1.3679521

    Article  CAS  Google Scholar 

  4. L. Wu, C.-C. Wei, T.-S. Wu, C.-C. Teng, Dielectric properties of modified PZT ceramics. J. Phys. C: Solid State Phys. 16(14), 2803–2812 (1983). https://doi.org/10.1088/0022-3719/16/14/020

    Article  CAS  Google Scholar 

  5. H.-B. Park, C.Y. Park, Y.-S. Hong, K. Kim, S.-J. Kim, Structural and dielectric properties of PLZT ceramics modified with lanthanide ions. J. Am. Ceram. Soc. 82(1), 94–102 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb01728.x

    Article  CAS  Google Scholar 

  6. P.K. Panda, B. Sahoo, PZT to lead free piezo ceramics: a review. Ferroelectrics 474(1), 128–143 (2015). https://doi.org/10.1080/00150193.2015.997146

    Article  CAS  Google Scholar 

  7. Y. Huan, X. Wang, J. Fang, L. Li, Grain size effect on piezoelectric and ferroelectric properties of BaTiO3 ceramics. J. Eur. Ceram. Soc. 34(5), 1445–1448 (2014). https://doi.org/10.1016/j.jeurceramsoc.2013.11.030

    Article  CAS  Google Scholar 

  8. K. Sakayori et al., Curie temperature of BaTiO3. Jpn. J. Appl. Phys. 34(9S), 5443 (1995). https://doi.org/10.1143/JJAP.34.5443

    Article  CAS  Google Scholar 

  9. X.M. Chen, T. Wang, J. Li, Dielectric characteristics and their field dependence of (Ba, Ca)TiO3 ceramics. Mater. Sci. Eng. B 113(2), 117–120 (2004). https://doi.org/10.1016/j.mseb.2004.04.003

    Article  CAS  Google Scholar 

  10. T. Badapanda, S. Chaterjee, A. Mishra, R. Ranjan, S. Anwar, Electric field induced strain, switching and energy storage behaviour of lead free Barium Zirconium Titanate ceramic. Physica B 521, 264–269 (2017)

    Article  CAS  Google Scholar 

  11. D. Xue, Y. Zhou, H. Bao, J. Gao, C. Zhou, X. Ren, Large piezoelectric effect in Pb-free Ba(Ti, Sn)O3–x(Ba, Ca)TiO3 ceramics. Appl. Phys. Lett. 99(12), 122901 (2011). https://doi.org/10.1063/1.3640214

    Article  CAS  Google Scholar 

  12. P. Julphunthong, S. Chootin, T. Bongkarn, Phase formation and electrical properties of Ba(ZrxTi1x)O3 ceramics synthesized through a novel combustion technique. Ceram. Int. 39, S415–S419 (2013). https://doi.org/10.1016/j.ceramint.2012.10.105

    Article  CAS  Google Scholar 

  13. X.W. Wang et al., Effects of calcining temperature on structure and dielectric and ferroelectric properties of sol–gel synthesized Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics. J. Electron. Mater. 49(1), 880–887 (2020). https://doi.org/10.1007/s11664-019-07769-4

    Article  CAS  Google Scholar 

  14. M.B. Abdessalem, S. Aydi, A. Aydi, N. Abdelmoula, Z. Sassi, H. Khemakhem, Polymorphic phase transition and morphotropic phase boundary in Ba1−xCaxTi1−yZryO3 ceramics. Appl. Phys. A 123(9), 583 (2017). https://doi.org/10.1007/s00339-017-1196-7

    Article  CAS  Google Scholar 

  15. W. Liu, X. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103(25), 257602 (2009). https://doi.org/10.1103/PhysRevLett.103.257602

    Article  CAS  Google Scholar 

  16. H. Mezzourh et al., Enhancing the dielectric, electrocaloric and energy storage properties of lead-free Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics prepared via sol–gel process. Phys. B: Condens. Matter 603, 412760 (2021)

    Article  CAS  Google Scholar 

  17. Z. Wang et al., Synthesis, structure, dielectric, piezoelectric, and energy storage performance of (Ba0.85Ca0.15)(Ti0.9 Zr0.1)O3 ceramics prepared by different methods. J. Mater. Sci.: Mater. Electron. 27(5), 5047–5058 (2016). https://doi.org/10.1007/s10854-016-4392-x

    Article  CAS  Google Scholar 

  18. M. Maraj, W. Wei, B. Peng, W. Sun, Dielectric and energy storage properties of Ba(1–x)CaxZryTi(1−y)O3 (BCZT): A Review. Materials 12(21), 3641 (2019). https://doi.org/10.3390/ma12213641

    Article  CAS  Google Scholar 

  19. Y. Zhang, H. Sun, W. Chen, A brief review of Ba(Ti0.8Zr0.2)O3–(Ba0.7Ca0.3)TiO3 based lead-free piezoelectric ceramics: past, present and future perspectives. J. Phys. Chem. Solids 114, 207–219 (2018). https://doi.org/10.1016/j.jpcs.2017.10.041

    Article  CAS  Google Scholar 

  20. X. Ji et al., Structural and electrical properties of BCZT ceramics synthesized by sol–gel process. J. Mater Sci. (2018). https://doi.org/10.1007/s10854-018-8751-7

    Article  Google Scholar 

  21. Y. Yao et al., Large piezoelectricity and dielectric permittivity in BaTiO3XBaSnO3 system: the role of phase coexisting. Europhys. Lett. (EPL) (2012). https://doi.org/10.1209/0295-5075/98/27008

    Article  Google Scholar 

  22. H. Kaddoussi et al., Indirect and direct electrocaloric measurements of (Ba1−xCax)(Zr0.1Ti0.9)O3 ceramics (x = 0.05, x = 0.20). J. Alloys Compd. 667, 198–203 (2016). https://doi.org/10.1016/j.jallcom.2016.01.159

    Article  CAS  Google Scholar 

  23. J. Li et al., Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications. Nat. Mater. 19(9), 999–1005 (2020). https://doi.org/10.1038/s41563-020-0704-x

    Article  CAS  Google Scholar 

  24. C. Neusel, H. Jelitto, D. Schmidt, R. Janssen, F. Felten, G.A. Schneider, Thickness-dependence of the breakdown strength: analysis of the dielectric and mechanical failure. J. Eur. Ceram. Soc. 35(1), 113–123 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.08.028

    Article  CAS  Google Scholar 

  25. I. Coondoo, N. Panwar, H. Amorín, M. Alguero, A.L. Kholkin, Synthesis and characterization of lead-free 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 ceramic. J. Appl. Phys. 113(21), 214107 (2013)

    Article  Google Scholar 

  26. P. Jaimeewong, M. Promsawat, A. Watcharapasorn, S. Jiansirisomboon, Comparative study of properties of BCZT ceramics prepared from conventional and sol-gel auto combustion powders. Integr. Ferroelectr. 175(1), 25–32 (2016). https://doi.org/10.1080/10584587.2016.1199913

    Article  CAS  Google Scholar 

  27. Y. Tian, L. Wei, X. Chao, Z. Liu, Z. Yang, Phase transition behavior and large piezoelectricity near the morphotropic phase boundary of lead-free free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 ceramics. J. Am Ceram. Soc. 96(2), 496–502 (2013)

    Article  CAS  Google Scholar 

  28. S. Belkhadir et al., Structural, dielectric and electrocaloric properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1xSnx)O3 ceramics elaborated by sol–gel method. J. Mater. Sci 30(15), 14099–14111 (2019)

    CAS  Google Scholar 

  29. Z. Hanani et al., Enhanced dielectric and electrocaloric properties in lead-free rod-like BCZT ceramics. J. Adv. Ceram. 9(2), 210–219 (2020)

    Article  CAS  Google Scholar 

  30. E.K. Abdel-Khalek, D.A. Rayan, A.A. Askar, M.I.A.A. Maksoud, H.H. El-Bahnasawy, Synthesis and characterization of SrFeO3δ nanoparticles as antimicrobial agent. J. Sol-Gel Sci. Technol. 97(1), 27–38 (2021). https://doi.org/10.1007/s10971-020-05431-8

    Article  CAS  Google Scholar 

  31. H. Kaddoussi et al., Room temperature electro-caloric effect in lead-free) Ba(Zr0.1Ti0.9)1−SnO3(x = 0, x = 0.075) ceramics. Solid State Commun. 201, 64–67 (2015). https://doi.org/10.1016/j.ssc.2014.10.003

    Article  CAS  Google Scholar 

  32. S. Merselmiz et al., Enhanced electrical properties and large electrocaloric effect in lead-free Ba0.8Ca0.2ZrxTi1xO3 (x= 0 and 0.02) ceramics. J. Mater. Sci 31(19), 17018–17028 (2020)

    CAS  Google Scholar 

  33. M. Ben Abdessalem, I. Kriaa, A. Aydi, N. Abdelmoula, Large electrocaloric effect in lead-free Ba1xCaxTi1yZryO3 ceramics under strong electric field at room-temperature. Ceram. Int. 44(12), 13595–13601 (2018)

    Article  CAS  Google Scholar 

  34. S. Patel Sharma, R. Vaish, Enhanced electrocaloric effect Ba0.85Ca0.15Zr0.1Ti0.9–xSnxO3 in ferroelectric ceramics. Phase Transit. 89(11), 1062–1073 (2016)

    Article  Google Scholar 

  35. S. Patel, M. Kumar, Electrocaloric properties of Sr and Sn doped BCZT lead-free ceramics. Eur. Phys. J. Appl. Phys. 91(2), 20905 (2020). https://doi.org/10.1051/epjap/2020200165

    Article  CAS  Google Scholar 

  36. Q. Zhang et al., Enhanced piezoelectric response of (Ba, Ca)(Ti, Zr) O3 ceramics by super large grain size and construction of phase boundary. J. Alloy. Compd. 794, 542–552 (2019)

    Article  CAS  Google Scholar 

  37. N. Qu, H. Du, X. Hao, A new strategy to realize high comprehensive energy storage properties in lead-free bulk ceramics. J. Mater. Chem. C 7(26), 7993–8002 (2019). https://doi.org/10.1039/C9TC02088H

    Article  CAS  Google Scholar 

  38. P. Redhu, A. Hooda Sharma, S. Dahiya, R. Punia, R.P. Tandon, Study of energy storage and electrocaloric behavior of lead-free Fe-doped BCT ceramics. Ferroelectrics 569(1), 136–147 (2020). https://doi.org/10.1080/00150193.2020.1791661

    Article  CAS  Google Scholar 

  39. K.R. Kandula, K. Banerjee, S.S.K. Raavi, S. Asthana, Enhanced electrocaloric effect and energy storage density of Nd-substituted 0.92 NBT-0.08 BT lead free ceramic. Phys. Status Solidi (a) 215(7), 1700915 (2018)

    Article  Google Scholar 

  40. W. Cai et al., Synergistic effect of grain size and phase boundary on energy storage performance and electric properties of BCZT ceramics. J. Mater. Sci.: Mater. Electron. 31(12), 9167–9175 (2020)

    CAS  Google Scholar 

  41. Z. Hanani et al., Thermally-stable high energy storage performances and large electrocaloric effect over a broad temperature span in lead-free BCZT ceramic. RSC Adv. 10(51), 30746–30755 (2020)

    Article  CAS  Google Scholar 

  42. K. Xu Yang, W. Peng, L. Li, Temperature-stable MgO-doped BCZT lead-free ceramics with ultra-high energy storage efficiency. J. Alloys Compd. 829, 154516 (2020)

    Article  Google Scholar 

  43. Q. Zhang et al., Controllable synthesis of (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 submicron sphere by hydroxide co-precipitation method. Ceram. Int. 46(18), 28285–28291 (2020). https://doi.org/10.1016/j.ceramint.2020.07.331

    Article  CAS  Google Scholar 

  44. S. Merselmiz et al., High energy storage efficiency and large electrocaloric effect in lead-free BaTi0.89Sn0.11O3 ceramic. Ceram. Int. 46(15), 23867–23876 (2020). https://doi.org/10.1016/j.ceramint.2020.06.163

    Article  CAS  Google Scholar 

  45. Z. Jiang, S. Prosandeev, L. Bellaiche, Energy storage in lead-free Ba(Zr, Ti)O3 relaxor ferroelectrics: Large densities and efficiencies and their origins. Phys. Rev. B 105(2), 024102 (2022). https://doi.org/10.1103/PhysRevB.105.024102

    Article  CAS  Google Scholar 

  46. Y. Hou, J. Li, J. Ding, T. Ye, R. Liang, Giant electrocaloric response in compositional manipulated BaTiO3 relaxor–ferroelectric system. J. Appl. Phys. 127(6), 064103 (2020). https://doi.org/10.1063/1.5142635

    Article  CAS  Google Scholar 

  47. A.S. Mischenko, Q. Zhang, J.F. Scott, R.W. Whatmore, N.D. Mathur, Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science 311(5765), 1270–1271 (2006). https://doi.org/10.1126/science.1123811

    Article  CAS  Google Scholar 

  48. Z. Kutnjak, B. Rožič, R. Pirc, Electrocaloric effect: theory, measurements, and applications, in Wiley Encyclopedia of Electrical and Electronics Engineering. ed. by J.G. Webster (Wiley, Hoboken, 2015), pp. 1–19. https://doi.org/10.1002/047134608X.W8244

    Chapter  Google Scholar 

  49. B. Zhang et al., Enhanced electrocaloric effect in the Sm and Hf co-doped BaTiO3 ceramics. Ceram. Int. 47(1), 1101–1108 (2021). https://doi.org/10.1016/j.ceramint.2020.08.226

    Article  CAS  Google Scholar 

  50. Y. Liu, J.F. Scott, B. Dkhil, Direct and indirect measurements on electrocaloric effect: recent developments and perspectives. Appl. Phys. Rev. 3(3), 031102 (2016). https://doi.org/10.1063/1.4958327

    Article  CAS  Google Scholar 

  51. S. Patel, A. Chauhan, R. Vaish, Caloric effects in bulk lead-free ferroelectric ceramics for solid-state refrigeration. Energ. Technol. 4(2), 244–248 (2016)

    Article  CAS  Google Scholar 

  52. M.-D. Li, X.-G. Tang, S.-M. Zeng, Q.-X. Liu, Y.-P. Jiang, W.-H. Li, Giant electrocaloric effect in BaTiO3–Bi(Mg1/2Ti1/2)O3 lead-free ferroelectric ceramics. J. Alloys Compd. (2018). https://doi.org/10.1016/j.jallcom.2018.03.102

    Article  Google Scholar 

  53. S. Merselmiz et al., Thermal-stability of the enhanced piezoelectric, energy storage and electrocaloric properties of a lead-free BCZT ceramic. RSC Adv. 11(16), 9459–9468 (2021). https://doi.org/10.1039/D0RA09707A

    Article  CAS  Google Scholar 

  54. R. Kumar, S. Singh, Giant electrocaloric and energy storage performance of [(K0.5Na0.5)NbO3](1−x)–[LiSbO3]x nanocrystalline ceramics. Sci Rep 8(1), 3186 (2018). https://doi.org/10.1038/s41598-018-21305-0

    Article  CAS  Google Scholar 

  55. X. Hao, Y. Zhao, Q. Zhang, Phase structure tuned electrocaloric effect and pyroelectric energy harvesting performance of (Pb0.97La0.02)(Zr,Sn,Ti)O3 antiferroelectric thick films. J. Phys. Chem. C 119(33), 18877–18885 (2015). https://doi.org/10.1021/acs.jpcc.5b04178

    Article  CAS  Google Scholar 

  56. R. Pirc, Z. Kutnjak, R. Blinc, Q.M. Zhang, Electrocaloric effect in relaxor ferroelectrics. J. Appl. Phys. 110(7), 074113 (2011). https://doi.org/10.1063/1.3650906

    Article  CAS  Google Scholar 

  57. G. Singh et al., Electro-caloric effect in 0.45BaZr0.2Ti0.8O3–0.55Ba0.7Ca0.3TiO3 single crystal. Appl. Phys. Lett. 102(8), 082902 (2013). https://doi.org/10.1063/1.4793213

    Article  CAS  Google Scholar 

  58. H. Tang, X.-G. Tang, M.-D. Li, Q.-X. Liu, Y.-P. Jiang, Pyroelectric energy harvesting capabilities and electrocaloric effect in lead-free Sr Ba1-Nb2O6 ferroelectric ceramics. J. Alloys Compd. 791, 1038–1045 (2019). https://doi.org/10.1016/j.jallcom.2019.03.385

    Article  CAS  Google Scholar 

  59. R. Kumar, S. Singh, Enhanced electrocaloric response and high energy-storage properties in lead-free (1−x)(K0.5Na0.5)NbO3−xSrZrO3 nanocrystalline ceramics. J. Alloys Compd. 764, 289–294 (2018). https://doi.org/10.1016/j.jallcom.2018.06.083

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the generous financial support of CNRST Priority Program PPR 15/2015, the Slovenian Research Agency programs P1-0125, the European Union's Horizon 2020 research and the Ministry of education and science of the Russian Federation Project #13.2251.21.0042.

Funding

CNRST Priority Program PPR 15/2015; The European Union's Horizon 2020 research; The Ministry of education and science of the Russian Federation Project #13.2251.21.0042.

Author information

Authors and Affiliations

Authors

Contributions

All authors certify that they have participated sufficiently in the work to take public responsibility for the content. Furthermore, each author certifies that this work has not been and will not be submitted to other journal or published in any other publication before. AL: investigation, methodology, data curation, writing original draft, validation. HM: investigation, methodology, validation. DM: visualization, methodology, writing—review & editing, validation, supervision. MA: formal analysis, validation. LH: visualization, review, editing, validation, supervision. EHC: visualization, review, editing, validation, supervision. IAL: formal analysis, validation. ZK: review & editing, visualization, validation. MEM: visualization, writing—review & editing, validation, supervision. On behalf of all co-authors.

Corresponding author

Correspondence to Afaak Lakouader.

Ethics declarations

Conflict of interest

Not applicable.

Ethical approval

Not applicable.

Consent to participate

We confirm that all authors mentioned in the manuscript have participated in, read and approved the manuscript, and have given their consent for the submission and subsequent publication of the manuscript.

Consent for publication

We confirm that all the authors mentioned in the manuscript have agreed to publish this paper.

Relevance summary

In this study, we report the successful preparation of lead-free Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramic with reduced thickness to reach a high electric field. The study of their structural, dielectric, and ferroelectric properties were also reported. The energy storage and electrocaloric properties were investigated using the indirect experimental approach based on the Maxwell relation and the Landau-Ginzburg-Devonshire (LGD) theory. We confirm that this work is original and has not been published elsewhere, nor it is not currently under consideration for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakouader, A., Mezzourh, H., Mezzane, D. et al. Improved energy storage and electrocaloric properties of lead-free Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramic. J Mater Sci: Mater Electron 33, 14381–14396 (2022). https://doi.org/10.1007/s10854-022-08362-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08362-y

Navigation