Skip to main content
Log in

Effects of Calcining Temperature on Structure and Dielectric and Ferroelectric Properties of Sol-Gel Synthesized Ba0.85Ca0.15Zr0.1Ti0.9O3 Ceramics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) powders were prepared by sol-gel process followed by calcining at different temperatures varying from 600°C to 950°C, and the BCZT ceramics were then prepared using the as-synthesized powders. The effect of calcining temperature on structure, dielectric properties and ferroelectric properties of BCZT ceramics were studied. Impurity was observed in powders calcined at 600°C, and single-phase perovskite structure was obtained when calcining temperature increased to 650°C, which was significantly lower than that of the solid-state reaction. The high-density ceramics with homogenous microstructure were obtained by sintering at 1300°C for 2 h. The dielectric constants as a function of measuring temperature exhibited a diffuse phase transition peak. With the increase of calcining temperature, the slimmer P–E loops were obtained, and the BCZT ceramic calcined at 950°C exhibits a relatively high dielectric constant (εr = 2013) and low dielectric loss (tan δ = 0.020) at 1 kHz and room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.H. Haertling, J. Am. Ceram. Soc. 1999, 797.

  2. Z. Wei, Y. Huang, T. Taiju, N. Yosuke, and J. Zeng, Ceram. Int. 38, 4 (2012).

    Google Scholar 

  3. W. Liu and X. Ren, Phys. Rev. Lett. 103, 25 (2009).

    Google Scholar 

  4. D. Lin, D. Xiao, J. Zhu, and P. Yu, Appl. Phys. Lett. 88, 6 (2006).

    Google Scholar 

  5. D. Hennings, A. Schnell, and G. Simon, J. Am. Ceram. Soc. 65, 11 (1982).

    Article  Google Scholar 

  6. J.F. Scott, Annu. Rev. Mater. Sci. 28, 28 (1998).

    Article  Google Scholar 

  7. H.I. Hsiang, C.S. Hsi, C.C. Huang, and S.L. Fu, J. Alloys Compd. 459, 1 (2008).

    Article  Google Scholar 

  8. H. Abdelkefi, H. Khemakhem, A. Simon, and J. Darriet, J. Alloys Compd. 463, 1 (2008).

    Article  Google Scholar 

  9. Z.G. Hu, Y.W. Li, M. Zhu, Z.Q. Zhu, and J.H. Chu, Phys. Lett. A 372, 24 (2008).

    Google Scholar 

  10. Y. Shi, H. Liu, H. Hao, M. Cao, Z. Yao, Z. Song, G. Li, W. Tang, and J. Xie, Ferroelectrics 487, 1 (2015).

    Article  Google Scholar 

  11. V.V. Shvartsman, W. Kleemann, J. Dec, Z.K. Xu, and S.G. Lu, J. Appl. Phys. 99, 12 (2006).

    Article  Google Scholar 

  12. Z. Yu, C. Ang, R. Guo, and A.S. Bhalla, J. Appl. Phys. 92, 5 (2002).

    Google Scholar 

  13. Z. Sun, L. Li, J. Li, H. Zheng, and W. Luo, Ceram. Int. 42, 9 (2016).

    Article  Google Scholar 

  14. S. Ye, J. Fuh, and L. Lu, J. Alloys Compd. 541, 22 (2012).

    Google Scholar 

  15. X.G. Tang, Q.X. Liu, J. Wang, and H.L.W. Chan, Appl. Phys. A 96, 4 (2009).

    Google Scholar 

  16. M.R. Panigrahi and S. Panigrahi, Physica B 405, 11 (2010).

    Google Scholar 

  17. A. Shukla, R.N.P. Choudhary, and A.K. Thakur, J. Phys. Chem. Solids 70, 11 (2009).

    Article  Google Scholar 

  18. T. Wu, Y. Pu, and K. Chen, Ceram. Int. 39, 6 (2013).

    Google Scholar 

  19. P. Wang, Y. Li, and Y. Lu, J. Eur. Ceram. Soc. 31, 11 (2011).

    Google Scholar 

  20. V.S. Puli, D.B. Chrisey, M. Tomozawa, G.L. Sharma, J.F. Scott, and R.S. Katiyar, J. Mater. Sci. 48, 5 (2013).

    Article  Google Scholar 

  21. D. Segal, Chemical Synthesis of Advanced Ceramic Materials Cambridge: Cambridge University Press, (1989).

  22. D. Wang, H. Jin, J. Yuan, B. Wen, Q. Zhao, D. Zhang, and M. Cao, Chin. Phys. Lett. 27, 4 (2010).

    Google Scholar 

  23. X. Yang, Z. Cheng, J. Cheng, D. Wang, F. Shi, G. Zheng, H. Liua, D. Zhang, and M. Cao, Integr. Ferroelectrics 176, 1 (2016).

    Article  Google Scholar 

  24. D. Wang, M. Wang, F. Liu, C. Yan, Q. Zhao, H. Sun, H. Jin, and M. Cao, Ceram. Int. 41, 7 (2015).

    CAS  Google Scholar 

  25. Z. Li, Z. Hou, W. Song, X. Liu, D. Wang, J. Tang, and X. Shao, Mater. Lett. 175 (2016).

  26. J.P. Praveen, K. Kumar, A.R. James, T. Karthik, S. Asthana, and D. Das, Curr. Appl. Phys. 14, 3 (2014).

    Article  Google Scholar 

  27. J.P. Praveen, T. Karthik, A.R. James, E. Chandrakala, S. Asthana, and D. Das, J. Eur. Ceram. Soc. 35, 6 (2015).

    Article  Google Scholar 

  28. Z. Wang, J. Wang, X. Chao, L. Wei, B. Yang, D. Wang, and Z. Yang, J. Mater. Sci. Mater. Electron. 27, 5 (2016).

    Article  Google Scholar 

  29. E. Chandrakala, J.P. Praveen, B.K. Hazra, and D. Das, Ceram. Int. 42, 4 (2016).

    Article  Google Scholar 

  30. X. Wang, B. Zhang, G. Shen, L. Sun, Y. Hu, L. Shi, X. Wang, C. Jie, and L. Zhang, Ceram. Int. 43, 16 (2017).

    Google Scholar 

  31. X. Wang, B. Zhang, L. Xu, X. Wang, Y. Hu, G. Shen, L. Sun, Sci. Rep. 7, (2017).

  32. X. Wang, B. Zhang, L. Sun, W. Qiao, Y. Hao, Y. Hu, X. Wang, J. Alloys Compd. 745, (2018).

  33. J. Khemprasit and B. Khumpaitool, Ceram. Int. 41, 1 (2015).

    Article  Google Scholar 

  34. L.N. Gao, S.N. Song, J.W. Zhai, X. Yao, and Z.K. Xu, J. Cryst. Growth 310, 6 (2008).

    Google Scholar 

  35. M. Nath and A. Roy, J. Mater. Sci. Mater. Electron. 26, 6 (2015).

    Article  Google Scholar 

  36. B.C. Luo, D.Y. Wang, M.M. Duan, and S. Li, Appl. Surf. Sci. 270, 14 (2013).

    Article  Google Scholar 

  37. N. Li, W.L. Li, L.D. Wang, D. Xu, Q.G. Chi, and W.D. Fei, J. Alloys Compd. 552, 10 (2013).

    Article  Google Scholar 

  38. S.B. Li, C.B. Wang, L. Li, Q. Shen, L.M. Zhang, J. Alloys Compd. 730, (2018).

  39. C.R. Zhou, X.Y. Liu, W.Z. Li, and C.L. Yuan, Solid State Commun. 149, 11 (2009).

    Google Scholar 

  40. P. Goel, K.L. Yadav, and A.R. James, J. Phys. D Appl. Phys. 37, 22 (2004).

    Article  Google Scholar 

  41. X. Wang, P. Jia, X. Wang, B. Zhang, L. Sun, and Q. Liu, J. Mater. Sci. Mater. Electron. 27, 11 (2016).

    Article  Google Scholar 

  42. X. Wang, P. Jia, L. Sun, B. Zhang, X. Wang, Y. Hu, J. Shang, and Y. Zhang, J. Mater. Sci. Mater. Electron. 29, 1 (2018).

    Google Scholar 

  43. D. Wang, D. Zhou, K. Song, A. Feteira, C. Randall, and I. Reaney, Adv. Electron. Mater. 1900025 (2019).

    Article  Google Scholar 

  44. P.Y. Foeller, J.S. Dean, I.M. Reaney, and D.C. Sinclair, Appl. Phys. Lett. 109, 8 (2016).

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Natural Science Foundation of China (Nos. 51402091, 51601059), the Key Scientific Research Foundation in Henan Province (No. 19B430005), the Special Scientific Research Foundation in Henan Normal University (No. 20180543), and the National University Student Innovation Program (No. 20160098).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. W. Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X.W., Zhang, B.H., Feng, G. et al. Effects of Calcining Temperature on Structure and Dielectric and Ferroelectric Properties of Sol-Gel Synthesized Ba0.85Ca0.15Zr0.1Ti0.9O3 Ceramics. J. Electron. Mater. 49, 880–887 (2020). https://doi.org/10.1007/s11664-019-07769-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07769-4

Keywords

Navigation