Skip to main content

Advertisement

Log in

Electrocaloric effect and high energy storage efficiency in lead-free Ba0.95Ca0.05Ti0.89Sn0.11O3 ceramic elaborated by sol–gel method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Structural, dielectric, ferroelectric, energy storage properties, and electrocaloric effect were studied in lead-free ceramic Ba0.95Ca0.05Ti0.89Sn0.11O3 (BCTSn) elaborated by the sol–gel method. Phase purity structure was confirmed from X-ray data using the Rietveld refinement analysis which revealed the coexistence of tetragonal (P4mm) and orthorhombic (Amm2) symmetries at room temperature. Phase transitions were detected by dielectric and differential scanning calorimetry measurements. The energy storage properties were determined from P-E hysteresis, and the electrocaloric properties were calculated indirectly via the Maxwell approach. The large value of electrocaloric temperature change of ΔT = 0.807 K obtained at a relatively small electric field of 30 kV cm−1, and the high energy storage efficiency can make BCTSn ceramic a promising candidate for environmentally friendly refrigeration and energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. A.S. Mischenko, Giant electrocaloric effect in thin-film PbZr09.5Ti0.a05O3. Science 311(5765), 1270–1271 (2006). https://doi.org/10.1126/science.1123811

    Article  CAS  Google Scholar 

  2. B. Lu et al., Large electrocaloric effect in relaxor ferroelectric and antiferroelectric lanthanum doped lead zirconate titanate ceramics. Sci. Rep. 7(1), 45335 (2017). https://doi.org/10.1038/srep45335

    Article  CAS  Google Scholar 

  3. M. Maraj, W. Wei, B. Peng, W. Sun, Dielectric and energy storage properties of Ba(1–x)CaxZryTi(1−y)O3 (BCZT): a review. Materials 12(21), 3641 (2019). https://doi.org/10.3390/ma12213641

    Article  CAS  Google Scholar 

  4. J. Tušek, K. Engelbrecht, D. Eriksen, S. Dall’Olio, J. Tušek, N. Pryds, A regenerative elastocaloric heat pump. Nat. Energy 1(10), 16134 (2016). https://doi.org/10.1038/nenergy.2016.134

    Article  CAS  Google Scholar 

  5. R.A. Bucur, I. Badea, A.I. Bucur, S. Novaconi, Dielectric, ferroelectric and piezoelectric proprieties of GdCoO3 doped (K0.5Na0.5)NbO3. J. Alloys Compd. 630, 43–47 (2015). https://doi.org/10.1016/j.jallcom.2015.01.030

    Article  CAS  Google Scholar 

  6. L.-Q. Cheng, J.-F. Li, A review on one dimensional perovskite nanocrystals for piezoelectric applications. J. Materiomics 2(1), 25–36 (2016). https://doi.org/10.1016/j.jmat.2016.02.003

    Article  Google Scholar 

  7. H. Zaitouni et al., Direct electrocaloric, structural, dielectric, and electric properties of lead-free ferroelectric material Ba0.9Sr0.1Ti1-xSnxO3 synthesized by semi-wet method. Phys. B Condens. Matter 566, 55–62 (2019). https://doi.org/10.1016/j.physb.2019.04.026

    Article  CAS  Google Scholar 

  8. Y. Zhang et al., Effects of silica coating on the microstructures and energy storage properties of BaTiO 3 ceramics. Mater. Res. Bull. 67, 70–76 (2015). https://doi.org/10.1016/j.materresbull.2015.01.056

    Article  CAS  Google Scholar 

  9. M. Acosta et al., BaTiO3 -based piezoelectrics: Fundamentals, current status, and perspectives. Appl. Phys. Rev. 4(4), 041305 (2017). https://doi.org/10.1063/1.4990046

    Article  CAS  Google Scholar 

  10. Q. Lou et al., Ferroelectric properties of Li-doped BaTiO3 ceramics. J. Am. Ceram. Soc. 101(8), 3597–3604 (2018). https://doi.org/10.1111/jace.15480

    Article  CAS  Google Scholar 

  11. D. Fu, M. Itoh, S. Koshihara, T. Kosugi, S. Tsuneyuki, Anomalous phase diagram of ferroelectric (Ba, Ca) TiO3 single crystals with giant electromechanical response. Phys. Rev. Lett. 100(22), 227601 (2008). https://doi.org/10.1103/PhysRevLett.100.227601

    Article  CAS  Google Scholar 

  12. Y. Yao et al., Large piezoelectricity and dielectric permittivity in BaTiO 3–xBaSnO 3 system: the role of phase coexisting. EPL 98(2), 27008 (2012). https://doi.org/10.1209/0295-5075/98/27008

    Article  CAS  Google Scholar 

  13. N. Horchidan et al., Multiscale study of ferroelectric–relaxor crossover in BaSnxTi1−xO3 ceramics. J. Eur. Ceram. Soc. 34(15), 3661–3674 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.06.005

    Article  CAS  Google Scholar 

  14. D. Fu, M. Itoh, Role of Ca off-centering in tuning ferroelectric phase transitions in Ba(Zr, Ti)O3 system, in Ferroelectric materials—synthesis and characterization. ed. by A. Peláiz-Barranco (InTech, London, 2015)

    Google Scholar 

  15. X. Wang, H. Yamada, C.-N. Xu, Large electrostriction near the solubility limit in BaTiO3–CaTiO3 ceramics. Appl. Phys. Lett. 86(2), 022905 (2005). https://doi.org/10.1063/1.1850598

    Article  CAS  Google Scholar 

  16. W. Liu, L. Cheng, S. Li, Prospective of (BaCa)(ZrTi)O3 lead-free piezoelectric ceramics. Curr. Comput.-Aided Drug Des. 9(3), 179 (2019). https://doi.org/10.3390/cryst9030179

    Article  CAS  Google Scholar 

  17. W. Liu, X. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103(25), 257602 (2009). https://doi.org/10.1103/PhysRevLett.103.257602

    Article  CAS  Google Scholar 

  18. D. Damjanovic, A morphotropic phase boundary system based on polarization rotation and polarization extension. Appl. Phys. Lett. 97(6), 062906 (2010). https://doi.org/10.1063/1.3479479

    Article  CAS  Google Scholar 

  19. X. Wang et al., Giant electrocaloric effect in lead-free Ba0.94 Ca0.06 Ti1−x Snx O3 ceramics with tunable curie temperature. Appl. Phys. Lett. 107, 252905 (2015). https://doi.org/10.1063/1.4938134

    Article  CAS  Google Scholar 

  20. L.-F. Zhu et al., Phase transition and high piezoelectricity in (Ba, Ca)(Ti1–x Snx )O3 lead-free ceramics. Appl. Phys. Lett. 103(7), 072905 (2013). https://doi.org/10.1063/1.4818732

    Article  CAS  Google Scholar 

  21. S. Merselmiz et al., Thermal-stability of the enhanced piezoelectric, energy storage and electrocaloric properties of a lead-free BCZT ceramic. RSC Adv. 11(16), 9459–9468 (2021). https://doi.org/10.1039/D0RA09707A

    Article  CAS  Google Scholar 

  22. Z. Hanani et al., Thermally-stable high energy storage performances and large electrocaloric effect over a broad temperature span in lead-free BCZT ceramic. RSC Adv. 10(51), 30746–30755 (2020). https://doi.org/10.1039/D0RA06116F

    Article  CAS  Google Scholar 

  23. P. Kantha et al., Effect of sintering method on the microstructure and dielectric properties of lead-free BCZT ceramics. Appl. Mech. Mater. 866, 263–266 (2017)

    Article  Google Scholar 

  24. V.S. Puli et al., Structure, dielectric, ferroelectric, and energy density properties of (1–x)BZT–xBCT ceramic capacitors for energy storage applications. J. Mater. Sci. 48(5), 2151–2157 (2013). https://doi.org/10.1007/s10853-012-6990-1

    Article  CAS  Google Scholar 

  25. Z. Wang et al., Synthesis, structure, dielectric, piezoelectric, and energy storage performance of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 ceramics prepared by different methods. J. Mater. Sci. Mater. Electron. 27(5), 5047–5058 (2016). https://doi.org/10.1007/s10854-016-4392-x

    Article  CAS  Google Scholar 

  26. R. Pramanik, M.K. Sahukar, Y. Mohan, B. Praveenkumar, S.R. Sangawar, A. Arockiarajan, Effect of grain size on piezoelectric, ferroelectric and dielectric properties of PMN-PT ceramics. Ceram. Int. 45(5), 5731–5742 (2019). https://doi.org/10.1016/j.ceramint.2018.12.039

    Article  CAS  Google Scholar 

  27. S. Ben Moumen et al., Structural, dielectric and magnetic studies of (0–3) type multiferroic (1–x) BaTi0.8Sn0.2O3–(x) La0.5Ca0.5MnO3 (0 ≤ x ≤ 1) composite ceramics. J. Mater. Sci. Mater. Electron. 31(21), 19343–19354 (2020). https://doi.org/10.1007/s10854-020-04468-3

    Article  CAS  Google Scholar 

  28. Z. Cai, X. Wang, W. Hong, B. Luo, Q. Zhao, L. Li, Grain-size–dependent dielectric properties in nanograin ferroelectrics. J. Am. Ceram. Soc. 101(12), 5487–5496 (2018). https://doi.org/10.1111/jace.15803

    Article  CAS  Google Scholar 

  29. S. Kumari, A. Kumar, V. Kumar, Thermal and structural characterization of Bi and Cu Co-doped BCZT (AIP Publishing LLC, NY, 2020), p. 030012

    Google Scholar 

  30. P. Mishra, P. Kumar, Effect of sintering temperature on dielectric, piezoelectric and ferroelectric properties of BZT–BCT 50/50 ceramics. J. Alloys Compd. 545, 210–215 (2012). https://doi.org/10.1016/j.jallcom.2012.08.017

    Article  CAS  Google Scholar 

  31. H. Mezzourh et al., Enhancing the dielectric, electrocaloric and energy storage properties of lead-free Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics prepared via sol-gel process. Phys. B Condens. Matter 603, 412760 (2021). https://doi.org/10.1016/j.physb.2020.412760

    Article  CAS  Google Scholar 

  32. M. Chen et al., Enhanced piezoelectricity in broad composition range and the temperature dependence research of (Ba1−xCax)(Ti0.95Sn0.05)O3 piezoceramics. Phys. B Condens. Matter 433, 43–47 (2014). https://doi.org/10.1016/j.physb.2013.10.014

    Article  CAS  Google Scholar 

  33. S. Belkhadir et al., Impedance spectroscopy analysis of the diffuse phase transition in lead-free (Ba0,85Ca0,15)(Zr0.1Ti0.9)O3 ceramic elaborated by sol-gel method. Superlattices Microstruct. 127, 71–79 (2019). https://doi.org/10.1016/j.spmi.2018.03.009

    Article  CAS  Google Scholar 

  34. B. Asbani et al., Structural, dielectric and electrocaloric properties in lead-free Zr-doped Ba0.8Ca0.2TiO3 solid solution. Solid State Commun. 237–238, 49–54 (2016). https://doi.org/10.1016/j.ssc.2016.04.001

    Article  CAS  Google Scholar 

  35. L. Zhao, B.-P. Zhang, P.-F. Zhou, L.-F. Zhu, J.-F. Li, Effect of Li2O addition on sintering and piezoelectric properties of (Ba, Ca)(Ti, Sn)O3 lead-free piezoceramics. J. Eur. Ceram. Soc. 35(2), 533–540 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.08.042

    Article  CAS  Google Scholar 

  36. Z. Zhao et al., Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO 3 ceramics. Phys. Rev. B 70(2), 024107 (2004). https://doi.org/10.1103/PhysRevB.70.024107

    Article  CAS  Google Scholar 

  37. I.A. Santos, J.A. Eiras, Phenomenological description of the diffuse phase transition in ferroelectrics. J. Phys. Condens. Matter 13(50), 11733–11740 (2001). https://doi.org/10.1088/0953-8984/13/50/333

    Article  CAS  Google Scholar 

  38. S. Hunpratub, S. Maensiri, P. Chindaprasirt, Synthesis and characterization of Ba0.85Ca0.15Ti0.9Zr0.1O3 ceramics by hydrothermal method. Ceram. Int. 40(8), 13025–13031 (2014). https://doi.org/10.1016/j.ceramint.2014.04.166

    Article  CAS  Google Scholar 

  39. V.S. Puli et al., Observation of large enhancement in energy-storage properties of lead-free polycrystalline 0.5BaZr0.2 Ti0.8 O3–0.5Ba0.7 Ca0.3 TiO3 ferroelectric thin films. J. Phys. Appl. Phys. 52(25), 255304 (2019). https://doi.org/10.1088/1361-6463/ab161a

    Article  CAS  Google Scholar 

  40. L.-F. Zhu, B.-P. Zhang, L. Zhao, J.-F. Li, High piezoelectricity of BaTiO3–CaTiO3–BaSnO3 lead-free ceramics. J. Mater. Chem. C 2(24), 4764–4771 (2014). https://doi.org/10.1039/C4TC00155A

    Article  CAS  Google Scholar 

  41. W. Cai et al., Synergistic effect of grain size and phase boundary on energy storage performance and electric properties of BCZT ceramics. J. Mater. Sci. Mater. Electron. 31(12), 9167–9175 (2020). https://doi.org/10.1007/s10854-020-03446-z

    Article  CAS  Google Scholar 

  42. S. Merselmiz et al., High energy storage efficiency and large electrocaloric effect in lead-free BaTi0.89Sn0.11O3 ceramic. Ceram. Int. 46(15), 23867–23876 (2020). https://doi.org/10.1016/j.ceramint.2020.06.163

    Article  CAS  Google Scholar 

  43. D. Zhan, Q. Xu, D.-P. Huang, H.-X. Liu, W. Chen, F. Zhang, Contributions of intrinsic and extrinsic polarization species to energy storage properties of Ba 0.95 Ca 0.05 Zr 0.2 Ti 0.8 O 3 ceramics. J. Phys. Chem. Solids 114, 220–227 (2018). https://doi.org/10.1016/j.jpcs.2017.10.038

    Article  CAS  Google Scholar 

  44. D. Fu, M. Itoh, S. Koshihara, Crystal growth and piezoelectricity of BaTiO3–CaTiO3 solid solution. Appl. Phys. Lett. 93(1), 012904 (2008). https://doi.org/10.1063/1.2956400

    Article  CAS  Google Scholar 

  45. Z. Luo et al., Enhanced electrocaloric effect in lead-free BaTi1–xSnxO3 ceramics near room temperature. Appl. Phys. Lett. 105(10), 102904 (2014). https://doi.org/10.1063/1.4895615

    Article  CAS  Google Scholar 

  46. C. Zhao, J. Yang, Y. Huang, X. Hao, J. Wu, Broad-temperature-span and large electrocaloric effect in lead-free ceramics utilizing successive and metastable phase transitions. J. Mater. Chem. A 7(44), 25526–25536 (2019). https://doi.org/10.1039/C9TA10164K

    Article  CAS  Google Scholar 

  47. M. Sanlialp, C. Molin, V.V. Shvartsman, S. Gebhardt, D.C. Lupascu, Modified differential scanning calorimeter for direct electrocaloric measurements. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63(10), 1690–1696 (2016). https://doi.org/10.1109/TUFFC.2016.2592542

    Article  Google Scholar 

  48. A. Pramanick et al., Stabilization of polar nanoregions in Pb-free ferroelectrics. Phys. Rev. Lett. 120(20), 207603 (2018). https://doi.org/10.1103/PhysRevLett.120.207603

    Article  CAS  Google Scholar 

  49. M. Sanlialp et al., Direct measurement of electrocaloric effect in lead-free Ba(SnxTi1–x )O 3 ceramics. Appl. Phys. Lett. 111(17), 173903 (2017). https://doi.org/10.1063/1.5001196

    Article  CAS  Google Scholar 

  50. Y. Liu, J.F. Scott, B. Dkhil, Some strategies for improving caloric responses with ferroelectrics. APL Mater. 4(6), 064109 (2016). https://doi.org/10.1063/1.4954056

    Article  CAS  Google Scholar 

  51. Y. Bai, X. Han, L. Qiao, Optimized electrocaloric refrigeration capacity in lead-free (1–x)BaZr0.2Ti0.8 O3–xBa0.7Ca0.3TiO3 ceramics. Appl. Phys. Lett. 102(25), 254 (2013). https://doi.org/10.1063/1.4810916

    Article  CAS  Google Scholar 

  52. S.K. Upadhyay, I. Fatima, V.R. Reddy, Study of electrocaloric effect in Ca and Sn co-doped BaTiO 3 ceramics. Mater. Res. Express 4(4), 046303 (2017). https://doi.org/10.1088/2053-1591/aa6694

    Article  CAS  Google Scholar 

  53. M. Abdessalem, I. Kriaa, A. Aydi, N. Abdelmoula, Large electrocaloric effect in lead-free Ba1-xCaxTi1-yZryO3 ceramics under strong electric field at room-temperature. Ceram. Int. 44(12), 13595–13601 (2018). https://doi.org/10.1016/j.ceramint.2018.04.194

    Article  CAS  Google Scholar 

  54. B. Li, W.J. Ren, X.W. Wang et al., Combined effects of diffuse phase transition and microstructure on the electrocaloric effect in Ba1−x SrxTiO3 ceramics. Appl. Phys. Lett. 103(16), 162902 (2013). https://doi.org/10.1063/1.4825266

    Article  CAS  Google Scholar 

  55. X.Q. Liu, T.T. Chen, Y.J. Wu, X.M. Chen, Enhanced electrocaloric effects in spark plasma-sintered Ba0.65 Sr0.35TiO3–based ceramics at room temperature. J. Am. Ceram. Soc. 96(4), 1021–1023 (2013). https://doi.org/10.1111/jace.12219

    Article  CAS  Google Scholar 

  56. R. Kumar, A. Kumar, S. Singh, Large electrocaloric response and energy storage study in environmentally friendly (1–x)K0.5Na0.5NbO3–xLaNbO3 nanocrystalline ceramics. Sustain. Energy Fuels 2(12), 2698–2704 (2018). https://doi.org/10.1039/C8SE00276B

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the generous financial support of CNRST Priority Program PPR 15/2015, the European Union’s Horizon 2020 research, and the Ministry of education and science of the Russian Federation Project #13.2251.21.0042.

Funding

CNRST Priority Program PPR 15/2015; The European Union’s Horizon 2020 research; Ministry of Science and Higher Education of the Russian Federation, Grant Agreement No. 075-15-2021-953.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youness Hadouch.

Ethics declarations

Conflict of interest

Not applicable.

Ethical approval

Not applicable.

Consent to participate

We confirm that all authors mentioned in the manuscript have participated in, read and approved the manuscript and have given their consent for the submission and subsequent publication of the manuscript.

Consent for publication

We confirm that all the authors mentioned in the manuscript have agreed to publish this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadouch, Y., Ben Moumen, S., Mezzourh, H. et al. Electrocaloric effect and high energy storage efficiency in lead-free Ba0.95Ca0.05Ti0.89Sn0.11O3 ceramic elaborated by sol–gel method. J Mater Sci: Mater Electron 33, 2067–2079 (2022). https://doi.org/10.1007/s10854-021-07411-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07411-2

Navigation