Skip to main content
Log in

Self-catalytic growth and characterization of AlGaN nanostructures with high Al composition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

AlGaN ternary alloy nanostructures have emerged as an important building block for optoelectronic devices and exhibit broad application prospects. However, the fabrication of AlGaN nanostructures with high quality, especially high Al composition, by chemical vapor deposition (CVD) is limited by their phase separation. Here, AlGaN ternary alloy nanostructures with Al/Ga atomic ratio more than 90% are synthesized by using CVD method. The AlGaN nanocones and nanorods are obtained by adjusting the Ar/NH3 flow ratio at the same temperature. Furthermore, it is found that the increase of Ar flux is more favorable to the transport of Ga source, which leads to the raise of Ga content in AlGaN nanostructures. On the other hand, the decrease of NH3 flow is conducive to the formation of nanorods. Moreover, the pre-deposited Al powder on Si substrate provides Al-rich growth conditions and nucleation sites for AlGaN nanostructures, which becomes the key to the formation of AlGaN nanostructures with high Al composition. Based on the evolution of morphology, the growth process of AlGaN nanostructures is investigated by a self-catalytic vapor–solid mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. J. Millan, P. Godignon, X. Perpina, A. Perez-Tomas, J. Rebollo, IEEE Trans. Power Electron. 29, 2155–2163 (2014)

    Article  Google Scholar 

  2. S. Fujita, Jpn J. Appl. Phys. 54, 030101 (2015)

    Article  CAS  Google Scholar 

  3. C. Xie, X.T. Lu, X.W. Tong, Z.X. Zhang, F.X. Liang, L. Liang, L.B. Luo, Y.C. Wu, Adv. Funct. Mater. 29, 1806006 (2019)

    Article  CAS  Google Scholar 

  4. J.Y. Tsao, S. Chowdhury, M.A. Hollis, D. Jena, N.M. Johnson, K.A. Jones, R.J. Kaplar, S. Rajan, C.G. Van de Walle et al., Adv. Electron. Mater. 4, 1600501 (2018)

    Article  CAS  Google Scholar 

  5. M.T. Hardy, D.F. Feezell, S.P. Denbaars, S. Nakamura, Mater. Today 14, 408–415 (2011)

    Article  CAS  Google Scholar 

  6. M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, Z. Yang, N.M. Johnson, M. Weyers, Semicond. Sci. Technol. 26, 014036 (2011)

    Article  CAS  Google Scholar 

  7. Y.H. Liang, E. Towe, Appl. Phys. Rev. 5, 011107 (2018)

    Article  CAS  Google Scholar 

  8. D. Li, K. Jiang, X. Sun, C. Guo, Adv. Opt. Photonics 10, 43 (2018)

    Article  CAS  Google Scholar 

  9. T.D. Moustakas, R. Paiella, Rep. Prog. Phys. 80, 106501 (2017)

    Article  CAS  Google Scholar 

  10. Q. Cai, H. You, H. Guo, J. Wang, B. Liu, Z. Xie, D. Chen, H. Lu, Y. Zheng, R. Zhang, Light Sci. Appl. 10, 94 (2021)

    Article  CAS  Google Scholar 

  11. L. Sang, M. Liao, M. Sumiya, Sensors (Switzerland) 13, 10482–10518 (2013)

    Article  CAS  Google Scholar 

  12. M. Usman, S. Malik, M. Munsif, Luminescence 36, 294–305 (2021)

    Article  CAS  Google Scholar 

  13. B. Liu, D. Chen, H. Lu, T. Tao, Z. Zhuang, Z. Shao, W. Xu, H. Ge, T. Zhi, F. Ren, J. Ye, Z. Xie, R. Zhang, Adv. Mater. 32, 1904354 (2020)

    CAS  Google Scholar 

  14. M. Kneissl, T.Y. Seong, J. Han, H. Amano, Nat. Photonics 13, 233–244 (2019)

    Article  CAS  Google Scholar 

  15. M.S. Alias, M. Tangi, J.A. Holguin-Lerma, E. Stegenburgs, A.A. Alatawi, I. Ashry, R.C. Subedi, D. Priante, M.K. Shakfa, T.K. Ng, B.S. Ooi, J. Nanophotonics 12, 043508 (2018)

    Article  Google Scholar 

  16. X. Liu, K. Mashooq, D.A. Laleyan, E.T. Reid, Z. Mi, Photonics Res. 7, B12 (2019)

    Article  CAS  Google Scholar 

  17. H. Sun, D. Priante, J.W. Min, R.C. Subedi, M.K. Shakfa, Z. Ren, K.H. Li, R. Lin, C. Zhao, T.K. Ng, J.H. Ryou, X. Zhang, B.S. Ooi, X. Li, ACS Photonics 5, 3305–3314 (2018)

    Article  CAS  Google Scholar 

  18. T. Aggerstam, S. Lourdudoss, H.H. Radamson, M. Sjödin, P. Lorenzini, D.C. Look, Thin Solid Films 515, 705–707 (2006)

    Article  CAS  Google Scholar 

  19. T. Nanjo, A. Imai, Y. Suzuki, Y. Abe, T. Oishi, M. Suita, E. Yagyu, Y. Tokuda, IEEE Trans. Electron. Devices 60, 1046–1053 (2013)

    Article  CAS  Google Scholar 

  20. F. Chen, X. Ji, S.P. Lau, Mater. Sci. Eng. R Rep. 142, 100578 (2020)

    Article  Google Scholar 

  21. X. Wang, J. Song, F. Zhang, C. He, Z. Hu, Z. Wang, Adv. Mater. 22, 2155–2158 (2010)

    Article  CAS  Google Scholar 

  22. S. Zhao, H.P.T. Nguyen, M.G. Kibria, Z. Mi, Prog. Quantum Electron. 44, 14–68 (2015)

    Article  CAS  Google Scholar 

  23. S. Kang, U. Chatterjee, D.Y. Um, Y.T. Yu, I.S. Seo, C.R. Lee, ACS Photonics 4, 2595–2603 (2017)

    Article  CAS  Google Scholar 

  24. J. Su, M. Gherasimova, G. Cui, H. Tsukamoto, J. Han, T. Onuma, M. Kurimoto, S.F. Chichibu, C. Broadbridge, Y. He, A.V. Nurmikko, Appl. Phys. Lett. 87, 183108 (2005)

    Article  CAS  Google Scholar 

  25. S. Zhao, S.Y. Woo, S.M. Sadaf, Y. Wu, A. Pofelski, D.A. Laleyan, R.T. Rashid, Y. Wang, G.A. Botton, Z. Mi, APL Mater. 4, 086115 (2016)

    Article  CAS  Google Scholar 

  26. A. Pierret, C. Bougerol, S. Murcia-Mascaros, A. Cros, H. Renevier, B. Gayral, B. Daudin, Nanotechnology 24, 115704 (2013)

    Article  CAS  Google Scholar 

  27. F. Chen, X. Ji, Q. Zhang, CrystEngComm 17, 1249–1257 (2015)

    Article  CAS  Google Scholar 

  28. R. Jiang, X. Meng, J. Mater. Sci. Mater. Electron. 30, 16266–16274 (2019)

    Article  CAS  Google Scholar 

  29. F. Ye, X.M. Cai, X. Zhong, H. Wang, X.Q. Tian, D.P. Zhang, P. Fan, J.T. Luo, Z.H. Zheng, G.X. Liang, J. Alloys Compd. 620, 87–90 (2015)

    Article  CAS  Google Scholar 

  30. C. He, Q. Wu, X. Wang, Y. Zhang, L. Yang, N. Liu, Y. Zhao, Y. Lu, Z. Hu, ACS Nano 5, 1291–1296 (2011)

    Article  CAS  Google Scholar 

  31. F. Chen, X. Ji, Z. Lu, Y. Shen, Q. Zhang, Mater. Sci. Eng. B 183, 24–28 (2014)

    Article  CAS  Google Scholar 

  32. L. Hong, Z. Liu, X.T. Zhang, S.K. Hark, Appl. Phys. Lett. 89, 193105 (2006)

    Article  CAS  Google Scholar 

  33. R.R. Pelá, C. Caetano, M. Marques, L.G. Ferreira, J. Furthmüller, L.K. Teles, Appl. Phys. Lett. 98, 151907 (2011)

    Article  CAS  Google Scholar 

  34. L. Shen, W. Lv, N. Wang, L. Wu, D. Qi, Y. Ma, W. Lei, CrystEngComm 19, 5940–5945 (2017)

    Article  CAS  Google Scholar 

  35. C. Liu, Z. Hu, Q. Wu, X. Wang, Y. Chen, H. Sang, J. Zhu, S. Deng, N. Xu, J. Am. Chem. Soc. 127, 1318–1322 (2005)

    Article  CAS  Google Scholar 

  36. W.W. Lei, D. Liu, P.W. Zhu, X.H. Chen, Q. Zhao, G.H. Wen, Q.L. Cui, G.T. Zou, Appl. Phys. Lett. 95, 162501 (2009)

    Article  CAS  Google Scholar 

  37. Y.V. Davydov, I.N. Goncharuk, A.N. Smirnov, A.E. Nikolaev, W.V. Lundin, A.S. Usikov, A.A. Klochikhin, J. Aderhold, J. Graul, O. Semchinova, H. Harima, Phys. Rev. B 65, 12503 (2002)

    Article  CAS  Google Scholar 

  38. M. Kuball, Surf. Interface Anal. 31, 987–999 (2001)

    Article  CAS  Google Scholar 

  39. G. Jung, K. Kim, J. Kim, Y. Sung, J.S. Kang, Y. Moon, S.Y. Lim, J.H. Song, J. Raman Spectrosc. 52, 1860–1867 (2021)

    Article  CAS  Google Scholar 

  40. X.H. Ji, Q.Y. Zhang, Z.Y. Ling, S.P. Lau, Appl. Phys. Lett. 95, 233105 (2009)

    Article  CAS  Google Scholar 

  41. J. Dai, B. Liu, Z. Zhuang, G. He, T. Zhi, T. Tao, Q. Xu, Y. Li, H. Ge, Z. Xie, R. Zhang, Nanotechnology 28, 385205 (2017)

    Article  CAS  Google Scholar 

  42. J. Zheng, J. Li, Z. Zhong, W. Lin, L. Chen, K. Li, X. Wang, C. Chou, S. Li, J. Kang, RSC Adv. 7, 55157–55162 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2019197), Open Project of State Key Laboratory of Superhard Materials, Jilin University (Grant No. 202004).

Author information

Authors and Affiliations

Authors

Contributions

ZL: Conceptualization, methodology, investigation, data curation, writing—original draft. LS: Conceptualization, methodology, investigation, writing—review & editing. JC: Methodology, investigation. XZ: Conceptualization, investigation, writing—review & editing. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Longhai Shen or Xinglai Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Shen, L., Chen, J. et al. Self-catalytic growth and characterization of AlGaN nanostructures with high Al composition. J Mater Sci: Mater Electron 33, 11906–11914 (2022). https://doi.org/10.1007/s10854-022-08152-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08152-6

Navigation