Skip to main content

Advertisement

Log in

Enhancing the thermoelectric performance by defect structures induced in p-type polypyrrole-polyaniline nanocomposite for room-temperature thermoelectric applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Organic thermoelectric materials mainly conducting polymers are green materials that can convert heat energy into electrical energy and vice versa at room temperature. In the present work, we investigated the thermoelectric properties of polymer nanocomposite of polypyrrole (PPy) and polyaniline (PANI) (PPy/PANI) by varying the pyrrole: aniline monomer ratios (60:40, 50:50, and 40:60). The PPy/PANI composite is prepared by in-situ chemical polymerization of PPy on PANI dispersion. It has been observed that the combination of two conducting polymers has enhanced the electrical and thermal properties in the PPy/PANI composite due to the strong ππ stacking and H-bonding interaction between the conjugated structure of PPy and conjugated structure of PANI. The maximum electrical conductivity of 14.7 S m−1 was obtained for composite with high pyrrole content, whereas the maximum Seebeck coefficient of 29.5 μV K−1 was obtained for composite with high aniline content at 366 K. Consequently, the PPy/PANI composite with pyrrole to aniline monomer ratio of 60:40 exhibits the optimal electrical conductivity, Seebeck coefficient, and high power factor. As a result, the maximum power factor of 2.24 nWm−1 K−2 was obtained for the PPy/PANI composite at 60:40 pyrrole to aniline monomer ratio, which is 29 times and 65.8 times higher than PPy (0.077 nWm−1 K−2) and PANI (0.034 nWm−1 K−2), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data presented in this study are available upon request from the corresponding author.

References

  1. S.B. Riffat, X. Ma, Appl. Therm. Eng. 23(8), 913–935 (2003)

    Article  Google Scholar 

  2. R. Ovik, B.D. Long, M.C. Barma, M. Riaz, M.F.M. Sabri, S.M. Said, R. Saidur, Renew. Sustain. Energy Rev. 64, 635–659 (2016)

    Article  CAS  Google Scholar 

  3. C. Fu, S. Bai, Y. Liu, Y. Tang, L. Chen, X. Zhao, T. Zhu, Nat. Commun. 6(1), 1–7 (2015)

    CAS  Google Scholar 

  4. T. Zhu, C. Fu, H. Xie, Y. Liu, X. Zhao, Adv. Energy Mater. 5(19), 1500588 (2015)

    Article  CAS  Google Scholar 

  5. X. Shi, J. Yang, J.R. Salvador, M. Chi, J.Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, L. Chen, J. Am. Chem. Soc. 133(20), 7837–7846 (2011)

    Article  CAS  Google Scholar 

  6. G.S. Nolas, D.T. Morelli, T.M. Tritt, Annu. Rev. Mater. Sci. 29(1), 89–116 (1999)

    Article  CAS  Google Scholar 

  7. C. Han, Q. Sun, Z. Li, S.X. Dou, Adv. Energy Mater. 6(15), 1600498 (2016)

    Article  CAS  Google Scholar 

  8. Maignan, A., Guilmeau, E., Gascoin, F., Bréard, Y. and Hardy. Science and technology of advanced materials. https://doi.org/10.1088/1468-6996/13/5/053003 (2012)

  9. M. Christensen, S. Johnsen, B.B. Iversen, Dalton Trans. 39(4), 978–992 (2010)

    Article  CAS  Google Scholar 

  10. H. Kleinke, Chem. Mater. 22(3), 604–611 (2010)

    Article  CAS  Google Scholar 

  11. M.A. Kamarudin, S.R. Sahamir, R.S. Datta, B.D. Long, M.F. Mohd Sabri, S.S. Mohd, Sci. World J. (2013). https://doi.org/10.1155/2013/713640

    Article  Google Scholar 

  12. C.J. Yao, H.L. Zhang, Q. Zhang, Polymers 11(1), 107 (2019)

    Article  CAS  Google Scholar 

  13. C.O. Yoon, B.C. Na, Y.W. Park, H. Shirakawa, K. Akagi, Synth. Met. 41(1–2), 125–128 (1991)

    Article  CAS  Google Scholar 

  14. W. Fan, C.Y. Guo, G. Chen, J. Mater. Chem. A 6(26), 12275–12280 (2018)

    Article  CAS  Google Scholar 

  15. Q. Yao, Q. Wang, L. Wang, Y. Wang, J. Sun, H. Zeng, Z. Jin, X. Huang, L. Chen, J. Mater. Chem. A 2(8), 2634–2640 (2014)

    Article  CAS  Google Scholar 

  16. L. Wang, F. Liu, C. Jin, T. Zhang, Q. Yin, RSC Adv. 4(86), 46187–46193 (2014)

    Article  CAS  Google Scholar 

  17. S. Misra, M. Bharti, A. Singh, A.K. Debnath, D.K. Aswal, Y. Hayakawa, Mater. Res. Express 4(8), 085007 (2017)

    Article  CAS  Google Scholar 

  18. S. Han, W. Zhai, G. Chen, X. Wang, RSC Adv. 4(55), 29281–29285 (2014)

    Article  CAS  Google Scholar 

  19. Z. Zhang, G. Chen, H. Wang, W. Zhai, J. Mater. Chem. C 3(8), 1649–1654 (2015)

    Article  CAS  Google Scholar 

  20. H. Song, K. Cai, J. Wang, S. Shen, Synth. Met. 211, 58–65 (2016)

    Article  CAS  Google Scholar 

  21. W. Fan, Y. Zhang, C.Y. Guo, G. Chen, Comp. Sci. Technol. 183, 107794 (2019)

    Article  CAS  Google Scholar 

  22. Kim, C., Baek, J.Y., Lopez, D.H. Kim, D.H. and Kim, H. Applied Physics Letters, 113(15), p.153901 (2018)

  23. K.E. Hnida, K. Pilarczyk, M. Knutelski, M. Marzec, M. Gajewska, A. Kosonowski, D. Chlebda, B. Lis, M. Przybylski, ChemPhysChem 19(13), 1617–1626 (2018)

    Article  CAS  Google Scholar 

  24. M. Bharti, A. Singh, S. Samanta, A.K. Debnath, D.K. Aswal, K.P. Muthe, S.C. Gadkari, Energy Convers. Manage. 144, 143–152 (2017)

    Article  CAS  Google Scholar 

  25. Y. Wang, J. Yang, L. Wang, K. Du, Q. Yin, Q. Yin, ACS Appl. Mater. Interfaces. 9(23), 20124–20131 (2017)

    Article  CAS  Google Scholar 

  26. X. Wang, M. Zhang, J. Zhao, G. Huang, H. Sun, Appl. Surf. Sci. 427, 1054–1063 (2018)

    Article  CAS  Google Scholar 

  27. J. Li, Y. Du, R. Jia, J. Xu, S.Z. Shen, Materials 10(7), 780 (2017)

    Article  CAS  Google Scholar 

  28. B. Liang, Z. Qin, J. Zhao, Y. Zhang, Z. Zhou, Y. Lu, J. Mater. Chem. A 2(7), 2129–2135 (2014)

    Article  CAS  Google Scholar 

  29. V. Shalini, M. Navaneethan, S. Harish, J. Archana, S. Ponnusamy, H. Ikeda, Y. Hayakawa, Appl. Surf. Sci. 493, 1350–1360 (2019)

    Article  CAS  Google Scholar 

  30. V.D. Thao, B.L. Giang, T.V. Thu, RSC Adv. 9(10), 5445–5452 (2019)

    Article  CAS  Google Scholar 

  31. M.E. Nicho, H. Hu, Sol. Energy Mater. Sol. Cells 63(4), 423–435 (2000)

    Article  CAS  Google Scholar 

  32. S. Quillard, G. Louarn, S. Lefrant, A.G. MacDiarmid, Phys. Rev. B 50(17), 12496 (1994)

    Article  CAS  Google Scholar 

  33. X. Li, X. Zhang, H. Li, J. Appl. Polym. Sci. 81(12), 3002–3007 (2001)

    Article  CAS  Google Scholar 

  34. V. Chaudhary, A. Kaur, J. Ind. Eng. Chem. 26, 143–148 (2015)

    Article  CAS  Google Scholar 

  35. X. Ou, X. Xu, RSC Adv. 6(17), 13780–13785 (2016)

    Article  CAS  Google Scholar 

  36. T.A. Tikish, A. Kumar, J.Y. Kim, Adv. Mater. Sci. Eng. (2018). https://doi.org/10.1155/2018/3890637

    Article  Google Scholar 

  37. G. Qi, L. Huang, H. Wang, Chem. Commun. 48(66), 8246–8248 (2012)

    Article  CAS  Google Scholar 

  38. A. Singh, Z. Salmi, N. Joshi, P. Jha, A. Kumar, H. Lecoq, S. Lau, M.M. Chehimi, D.K. Aswal, S.K. Gupta, RSC Adv. 3(16), 5506–5523 (2013)

    Article  CAS  Google Scholar 

  39. X. Fan, Z. Yang, N. He, RSC Adv. 5(20), 15096–15102 (2015)

    Article  CAS  Google Scholar 

  40. A.B. Rohom, P.U. Londhe, S.K. Mahapatra, S.K. Kulkarni, N.B. Chaure, High Perform. Polym. 26(6), 641–646 (2014)

    Article  CAS  Google Scholar 

  41. A.K. Sharma, P. Bhardwaj, S.K. Dhawan, Y. Sharma, Adv. Mater. Lett 6(5), 414–420 (2015)

    Article  CAS  Google Scholar 

  42. Z.B.D. Sayah, A. Mekki, F. Delaleux, O. Riou, J.F. Durastanti, J. Electron. Mater. 48(6), 3662–3675 (2019)

    Article  CAS  Google Scholar 

  43. Ö. Karatepe, Y. Yıldız, H. Pamuk, S. Eris, Z. Dasdelen, F. Sen, RSC Adv. 6(56), 50851–50857 (2016)

    Article  CAS  Google Scholar 

  44. H.R. Tantawy, B.A.F. Kengne, D.N. McIlroy, T. Nguyen, D. Heo, Y. Qiang, D.E. Aston, J. Appl. Phys. 118(17), 175501 (2015)

    Article  CAS  Google Scholar 

  45. S. Liu, D. Liu, Z. Pan, Polymers 10(4), 351 (2018)

    Article  CAS  Google Scholar 

  46. D. Kowalski, A. Tighineanu, P. Schmuki, J. Mater. Chem. 21(44), 17909–17915 (2011)

    Article  CAS  Google Scholar 

  47. K. Pal, V. Panwar, S. Bag, J. Manuel, J.H. Ahn, J.K. Kim, Graphene oxide–polyaniline–polypyrrole nanocomposite for a supercapacitor electrode. RSC Adv. 5(4), 3005–3010 (2015)

    Article  CAS  Google Scholar 

  48. L. Liang, G. Chen, C.Y. Guo, Mater. Chem. Front. 1(2), 380–386 (2017)

    Article  CAS  Google Scholar 

  49. S. Wang, Y. Zhou, Y. Liu, L. Wang, C. Gao, J. Mater. Chem. C 8(2), 528–535 (2020)

    Article  Google Scholar 

  50. Y. Wang, Q. Yin, K. Du, S. Mo, Q. Yin, Macromol. Res. 28(11), 973–978 (2020)

    Article  CAS  Google Scholar 

  51. C.O. Yoon, J.H. Kim, H.K. Sung, H. Lee, Synth. Met. 84(1–3), 789–790 (1997)

    Article  CAS  Google Scholar 

  52. P. Limelette, B. Schmaltz, D. Brault, M. Gouineau, C. Autret-Lambert, S. Roger, V. Grimal, F. Van Tran, J. Appl. Phys. 115(3), 033712 (2014)

    Article  CAS  Google Scholar 

  53. H. Song, C. Liu, J. Xu, Q. Jiang, H. Shi, RSC Adv. 3(44), 22065–22071 (2013)

    Article  CAS  Google Scholar 

  54. C. Meng, C. Liu, S. Fan, Adv. Mater. 22(4), 535–539 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the management of SRM Institute of Science and Technology for the financial support (SEED and STARTUP research grant).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

US: Conceptualization, investigation, writing—original draft. ESK and MP: Methodology, software, and data curation. VS and KKB: Validation, formal analysis, and resources. MN: Supervision, resources, and writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to M. Navaneethan.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreevidya, U., Shalini, V., Bharathi, K.K. et al. Enhancing the thermoelectric performance by defect structures induced in p-type polypyrrole-polyaniline nanocomposite for room-temperature thermoelectric applications. J Mater Sci: Mater Electron 33, 11650–11660 (2022). https://doi.org/10.1007/s10854-022-08112-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08112-0

Navigation