Skip to main content
Log in

Thermoelectric Properties of Polypyrrole Nanotubes

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Polypyrrole (PPy) nanotubes with different diameters have been successfully prepared by different concentrations of oxidant with methyl orange (MO) as template. When the molar ratio of oxidant to pyrrole monomer was 1.5:1, PPy-1.5:1 nanotubes with smooth surface and diameter of 40–60 nm were obtained. The large crystallization orientations of molecular chains in PPy nanotubes due to the template effect of MO significantly enhance π-π interactions, which improves electrical conductivity of PPy-1.5:1 nanotubes. The great degree of conjugation and the small conjugate defect of the molecular chains in PPy-1.5:1 also contribute to high mobility of carriers and high electrical conductivity. The hollow structures introduced to PPy bring about appropriate grain boundary defects and benefit seebeck coefficient of PPy nanotubes. Enhancement of electrical conductivity and seebeck coefficient of the PPy-1.5:1 nanotubes result in the maximization of power factor of 0.55 µWm−1K−2, about 22 orders of magnitude higher than PPy particles prepared under the same condition. By designing and tailoring the polymer structure, nano-structured PPy with high thermoelectric properties are highly expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. S. Liu, Y. Xiao, C. Gang, and Z. F. Ren, Nano Energy, 1(2012) 42–56.

    Article  CAS  Google Scholar 

  2. G. H. Kim, L. Shao, K. Zhang, and K. P. Pipe, Nat. Mater., 12, 719 (2013).

    Article  CAS  Google Scholar 

  3. M. He, F. Qiu, and Z. Q. Lin, Energy Environ. Sci., 6, 1352 (2013).

    Article  Google Scholar 

  4. H. Lee, D. Vashaee, D. Z. Wang, M. S. Dresselhaus, Z. F. Ren, and G. Chen, J. Appl. Phys., 107, 094308 (2010).

    Article  Google Scholar 

  5. F. Golgovici, A. Cojocaru, L. Anicai, and T. Visan, Mater. Chem. Phys., 126, 700 (2011).

    Article  CAS  Google Scholar 

  6. A. Bailini, F. Donati, M. Zamboni, V. Russo, M. Passoni, C. S. Casari, A. L. Bassi, and C. E. Bottani, Appl. Surf. Sci., 4, 1249 (2007).

    Article  Google Scholar 

  7. L. M. Wang, Q. Yao, H. Bi, F. Q. Huang, Q. Wang, and L. D. Chen, J. Mater. Chem. A, 3, 7086 (2015).

    Article  CAS  Google Scholar 

  8. R. B. Aïch, N. Blouin, A. Bouchard, and M. Leclerc, Chem. Mater., 21, 751 (2009).

    Article  Google Scholar 

  9. X. M. He, C. Li, F. E. Chen, and G. Q. Shi, Adv. Funct. Mater., 17, 2911 (2007).

    Article  CAS  Google Scholar 

  10. L. R. Liang, G. M. Chen, and C. Y. Guo, Mater. Chem. Front., 1, 380 (2017).

    Article  CAS  Google Scholar 

  11. X. C. Hu, G. M. Chen, X. Wang, and H. F. Wang, J. Mater. Chem. A, 3, 20896 (2015).

    Article  CAS  Google Scholar 

  12. S. C. Xin, N. Yang, F. Gao, J. Zhao, L. Li, and C. Teng, Mater. Chem. Phys., 212, 440 (2018).

    Article  CAS  Google Scholar 

  13. S. Misra, M. Bharti, A. Singh, A. K. Debnath, D. K. Aswal, and Y. Hayakawa, Mater. Res. Express, 4, 085007 (2017).

    Article  Google Scholar 

  14. M. Li, W. Li, J. Liu, and J. Yao, J. Mater. Sci: Mater. Electron., 24, 906 (2013).

    CAS  Google Scholar 

  15. J. Wu, Y. Sun, W. B. Pei, L. Huang, W. Xu, and Q. Zhang, Synth. Met., 196, 173 (2014).

    Article  CAS  Google Scholar 

  16. M. Bharti, P. Jha, A. Singh, A. K. Chauhan, S. Misra, M. Yamazoe, A. K. Debnath, K. Marumoto, K. P. Muthe, and D. K. Aswal, Energy, 176, 853 (2019).

    Article  CAS  Google Scholar 

  17. Z. B. D. Sayah, A. Mekki, F. Delaleux, O. Riou, and J. F. Durastanti, J. Electron. Mater., 48, 3662 (2019).

    Article  Google Scholar 

  18. Y. Du, H. Niu, J. Li, Y. C. Dou, S. Z. Shen, R. P. Jia, and J. Y. Xu, Polymers, 10, 1143 (2018).

    Article  PubMed Central  Google Scholar 

  19. J. C. Thiéblemont, J. L. Gabelle, and M. F. Planche, Synth. Met., 66, 243 (1994).

    Article  Google Scholar 

  20. B. Tian and G. Zerbi, J. Chem. Phys., 92, 3892 (1990).

    Article  CAS  Google Scholar 

  21. B. Saner, S. A. Gürsel, and Y. Yürüm, Fuller. Nanotub. Car. N., 21, 233 (2013).

    Article  CAS  Google Scholar 

  22. Z. Gu, C. Li, G. Wang, L. Zhang, X. H. Li, W. D. Wang, and S. L. Jin, J. Polym. Sci., Part B: Polym. Phys., 48, 1329 (2010).

    Article  CAS  Google Scholar 

  23. L. N. Fan and X. C. Xu, Compos. Sci. Technol., 118, 264 (2015).

    Article  CAS  Google Scholar 

  24. L. Y. Wang, F. Z. Liu, C. Jin, T. Zhang, and Q. J. Yin, RSC Adv., 4, 46187 (2014).

    Article  CAS  Google Scholar 

  25. K. Xu, G. Chen, and D. Qiu, J. Mater. Chem. A, 1, 12395 (2013).

    Article  CAS  Google Scholar 

  26. Y. H. Wang, J. Yang, L. Y. Wang, K. Du, Q. Yin, and Q. J. Yin, ACS Appl. Mater. Interfaces, 9, 20124 (2017).

    Article  CAS  Google Scholar 

  27. J. Wang, K. F. Cai, S. Shen, and J. L. Yin, Synth. Met., 195, 132 (2014).

    Article  CAS  Google Scholar 

  28. Q. Yao, L. D. Chen, W. Q. Zhang, S. C. Liufu, and X. H. Chen, ACS Nano, 4, 2445 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Yin or Qinjian Yin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgments: This work has been supported by the National Natural Science Foundation of China (NSFC) (No. 51673122 and No.51973127), and Sichuan Science and Technology Program (Grant No.2018GZ0461). We are thankful to Experimental Testing Center College of Chemistry, Sichuan University for their help in sample analysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yin, Q., Du, K. et al. Thermoelectric Properties of Polypyrrole Nanotubes. Macromol. Res. 28, 973–978 (2020). https://doi.org/10.1007/s13233-020-8105-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8105-1

Keywords

Navigation