Skip to main content
Log in

Response Surface Methodology as a Powerful Tool for the Synthesis of Polypyrrole-Doped Organic Sulfonic Acid and the Optimization of its Thermoelectric Properties

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In the present study, we aimed to fix the trigger parameters in the chemical synthesis of polypyrrole (PPy) using response surface methodology (RSM), based on central composite design (CCD) for high thermoelectric properties at room temperature up to 373 K. The RSM experimental design involved the investigation of three selected parameters [reaction time (t), oxidant (O) and dopant (D) concentrations] simultaneously. For this purpose, many reactions were performed in order to obtain thermoelectric efficiency responses, the so-called figure of merit (ZT). The bulk’s properties including electrical conductivity (σ), thermal conductivity (κ) and Seebeck coefficient (S) were respectively determined using the four-probes method, hot disc technique, and a homemade device. A second-order polynomial equation was used to model the relationship between the synthesis parameters and the figure of merit (ZT). A satisfactory R2 value of 0.83 was obtained from the regression analyses, suggesting good correlation between observed experimental values and predicted values by the second-order polynomial. The linear, quadratic and interaction terms of the considered parameters have a significant effect (P < 0.05) on the figure of merit (ZT). A reaction time of 20 min, an oxidant concentration of 0.1 mol and a dopant concentration of 0.005 mol were found to be the combinatorial optimal parameters for PPy synthesis resulting in improved thermoelectric properties, where the maximum value of the figure of merit (ZT) was around of 2.71 × 10−6. Moreover, several techniques like Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy were performed to characterize optimized PPy, and its characteristics were then correlated with their bulk properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Ongena and G.V. Oost, Fusion Sci. Technol. 61, 3 (2012).

    Article  Google Scholar 

  2. P.O. Logerais, O. Riou, M.A. Camara, and J.F. Durastanti, J. Solar Energy 2013, 1 (2013).

    Article  Google Scholar 

  3. N. Wang, T. Ding, W. Liu, A.S. Ahmed, Z. Wang, M. Tian, X.W. Sun, and Q. Zhang, Adv. Energy Mater. 7, 1700522 (2017).

    Article  Google Scholar 

  4. R.B. Song, Y.C. Wu, Z.Q. Lin, J. Xie, C.H. Tan, J.S.C. Loo, B. Cao, J.R. Zhang, J.J. Zhu, and Q. Zhang, Angew. Chem. Int. Ed. 56, 10516 (2017).

    Article  Google Scholar 

  5. H. Yang, Z. Wei, and L. Chengzhi, Appl. Energy 86, 163 (2009).

    Article  Google Scholar 

  6. N.L. Panwar, S.C. Kaushik, and S. Kothari, Renew. Sustain. Energy Rev. 15, 1513 (2011).

    Article  Google Scholar 

  7. A. Demirbas, Progress Energy Combust. Sci. 31, 171 (2005).

    Article  Google Scholar 

  8. L.E. Bell, Science 321, 1457 (2008).

    Article  Google Scholar 

  9. B.I. Ismail and W.H. Ahmed, Electr. Electron. Eng. 2, 27 (2009).

    Google Scholar 

  10. S.B. Riffat and X. Ma, Appl. Therm. Eng. 23, 913 (2003).

    Article  Google Scholar 

  11. C.T. Hsu, G.Y. Huang, H.S. Chu, B. Yu, and D.J. Yao, Appl. Energy 88, 1291 (2011).

    Article  Google Scholar 

  12. C. Han, Z. Li, and S. Dou, Chin. Sci. Bull. 59, 2073 (2014).

    Article  Google Scholar 

  13. E. Li, N. Wang, H. He, and H. Chen, Nanoscale. Res. Let. 11, 188 (2016).

    Article  Google Scholar 

  14. J. Kangsabanik and A. Alam, J. Mater. Chem. A 5, 6131 (2017).

    Article  Google Scholar 

  15. Q. Zhang, X. Ai, L. Wang, Y. Chang, W. Luo, W. Jiang, and L. Chen, Adv. Funct. Mater. 25, 966 (2015).

    Article  Google Scholar 

  16. H. Zhu, R. He, J. Mao, Q. Zhu, C. Li, J. Sun, W. Ren, Y. Wang, Z. Liu, Z. Tang, A. Sotnikov, Z. Wang, D. Broido, D.J. Singh, G. Chen, K. Nielsch, and Z. Ren, Nat. Commun. 9, 2497 (2018).

    Article  Google Scholar 

  17. C. Ou, A.L. Sangle, A. Datta, Q. Jing, T. Busolo, T. Chalklen, V. Narayan, and S. Kar-Narayan, ACS. Appl. Mater Interface 10, 19580 (2018).

    Article  Google Scholar 

  18. S. Peng, D. Wang, J. Lu, M. He, C. Xu, Y. Li, and S. Zhu, J. Polym. Environ. 25, 1208 (2017).

    Article  Google Scholar 

  19. W. He, G. Zhang, X. Zhang, J. Ji, G. Li, and X. Zhao, Appl. Energy 13, 1 (2015).

    Google Scholar 

  20. J. Zhao, D. Tan, and G. Che, J. Mater. Chem. 5, 47 (2017).

    Google Scholar 

  21. J. Wu, Y. Sun, W. Xu, and Q. Zhang, Synth. Met. 189, 177 (2014).

    Article  Google Scholar 

  22. J. Wu, Y. Sun, W.B. Pei, L. Huang, W. Xu, and Q. Zhang, Synth. Met. 196, 173 (2014).

    Article  Google Scholar 

  23. C. Gao and G. Chen, Compos. Sci. Technol. 124, 52 (2016).

    Article  Google Scholar 

  24. X. Hu, G. Chen, and X. Wang, Compos. Sci. Technol. 144, 43 (2017).

    Article  Google Scholar 

  25. I. Shown, A. Ganguly, L.C. Chen, and K.H. Chen, Energy Sci. Eng. 3, 2 (2015).

    Article  Google Scholar 

  26. R. Kroon, D.A. Mengistie, D. Kiefer, J. Handymen, J.D. Ryan, L. Yu, and C. Müller, Chem. Soc. 45, 6147 (2016).

    Article  Google Scholar 

  27. L. Liang, G. Chen, and C.Y. Guo, Mater. Chem. Front. 1, 380 (2017).

    Article  Google Scholar 

  28. D. Su, J. Zhang, S. Dou, and G. Wang, Chem. Commun. 51, 16092 (2015).

    Article  Google Scholar 

  29. T.F. Otero and S. Beaumont, Sens. Actuators B 253, 958 (2017).

    Article  Google Scholar 

  30. B. Mettai, A. Mekki, F. Merdj, Z. Bekkar Djelloul Sayah, K. Moustefai Soumia, Z. Safiddine, R. Mahmoud, and M.M. Chehimi, J. Polym. Res. 25, 95 (2018).

    Article  Google Scholar 

  31. F. Merdj, A. Mekki, D. Guettiche, B. Mettai, Z. Bekkar Djelloul Sayah, Z. Safidine, A. Abdi, R. Mahmoud, and M.M. Chehimi, Macromol. Res. 26, 511 (2018).

    Article  Google Scholar 

  32. L. Liang, G. Chen, and C.Y. Guo, Compos. Sci. Technol. 129, 130 (2016).

    Article  Google Scholar 

  33. Q. Zhang, Y. Sun, W. Xu, and D. Zhu, Adv. Mater. 26, 6829 (2014).

    Article  Google Scholar 

  34. Y. Li, Y. Du, Y. Dou, K. Cai, and J. Xu, Synth. Met. 226, 119 (2017).

    Article  Google Scholar 

  35. J.V.D. Perez, E.T. Nadres, H.N. Nguyen, M.L.P. Dalida, and D.F. Rodrigues, RSC Adv. 7, 18480 (2017).

    Article  Google Scholar 

  36. M. Saad, H. Tahir, J. Khan, U. Hameed, and A. Saud, Ultrason. Sonochem. 34, 600 (2017).

    Article  Google Scholar 

  37. I. Mangilia, M. Lasagnia, K. Huangb, and A.I. Isayevb, Chemom. Intell. Lab. Syst. 144, 1 (2015).

    Article  Google Scholar 

  38. M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, and L.A. Escaleira, Talanta 76, 965 (2008).

    Article  Google Scholar 

  39. M. Rahmani, E. Ghasemi, and M. Sasani, Talanta 165, 27 (2017).

    Article  Google Scholar 

  40. A. Yussuf, M. Al-Saleh, S. Al-Enezi, and G. Abraham, Int. J. Polym. Sci. 2008, 8 (2018).

    Google Scholar 

  41. J.Y. Leea, K.T. Songb, S.Y. Kimb, Y.C. Kim, D.Y. Kima, and C.Y. Kima, Synth. Met. 84, 137 (1997).

    Article  Google Scholar 

  42. L.X. Wang, X.G. Li, and Y.L. Yang, React. Funct. Polym. 45, 125 (2001).

    Article  Google Scholar 

  43. K. Chatterjee, S. Ganguly, K. Kargupta, and D. Banerjee, Synth. Met. 161, 275 (2011).

    Article  Google Scholar 

  44. S. Bahraeian, K. Abron, F. Pourjafarian, and R.A. Majid, Adv. Mat. Res. 795, 707 (2013).

    Google Scholar 

  45. D.C. Montgomery, Design and Analysis of Experiments (New York: Wiley, 2017).

    Google Scholar 

  46. F. Ferrero, L. Napoli, C. Tonin, and A. Varesano, J. Appl. Polym. Sci. 102, 4121 (2006).

    Article  Google Scholar 

  47. M.F. Planche, J.C. Thleblemont, N. Mazars, and C. Bidan, J. Appl. Polym. Sci. 52, 1867 (1994).

    Article  Google Scholar 

  48. G. Zerbi, C. Castiglioni, J.T. Lopez Navarrete, B. Tian, and M. Gussoni, Synth. Met. 28, D359 (1989).

    Article  Google Scholar 

  49. Y. Wang, J. Yang, L. Wang, K. Du, and Q. Yin, ACS Appl. Mater. Interfaces 9, 20124 (2017).

    Article  Google Scholar 

  50. L.Y. Wang, F.Z. Liu, C. Jin, T.R. Zhang, and Q.J. Yin, RSC Adv. 4, 46187 (2014).

    Article  Google Scholar 

  51. S. Misra, M.B. Harti, A. Singh, D.K. Aswal, and Y. Hayakawa, Mater. Res. Express 4, 085007 (2017).

    Article  Google Scholar 

  52. J. Li, Y. Du, R. Jia, J. Xu, and S.Z. Shen, Coatings 7, 211 (2017).

    Article  Google Scholar 

Download references

Acknowledgments

Zakaria BDS. wishes to thank Ecole Militaire Polytechnique and Université Paris-Est, Centre d’Etudes et de Recherche en Thermique Environnement et Systèmes (CERTES), for a provision of scholarship within the framework of an Algerian-French co-tutelle PhD program granted under the project number N°01/16/DRFPG/CMDT.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmed Mekki or Jean-Felix Durastanti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bekkar Djelloul Sayah, Z., Mekki, A., Delaleux, F. et al. Response Surface Methodology as a Powerful Tool for the Synthesis of Polypyrrole-Doped Organic Sulfonic Acid and the Optimization of its Thermoelectric Properties. J. Electron. Mater. 48, 3662–3675 (2019). https://doi.org/10.1007/s11664-019-07124-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07124-7

Keywords

Navigation