Skip to main content
Log in

Examining the consequences of calcium substitution on the physical properties and conduction mechanism of Y3GaO6

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The influence of calcium doping on the Y3GaO6 system was systematically investigated for electrochemical applications. The Y3(1−x)Ca3xGaO6 (x = 0, 0.02, 0.04, 0.08, 0.12) ceramics compositions were prepared via conventional solid-state reaction route and their structural, electrical and electrochemical properties were investigated. The structural phase analysis revealed the formation of the orthorhombic phase with the Cmc21 space group. However, at higher concentrations of calcium doping, i.e. x > 0.02, a few secondary phases of Y2O3 and CaCO3 were also observed. Impedance spectra suggest an increase in the total conductivity up to x = 0.02 of Ca doping, and a decrease in the conductivity was observed for the higher concentration of Ca substitution. The substitution of Ca with x > 0.02 not only increases the oxygen vacancies rather segregates the impurities along the grain boundaries. Consequently, the impurities have negative influence on both the grain and grain-boundary conductivities. Cyclic voltammetry and Chronoamperometry studies have also been performed to characterize the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this manuscript (and its supplementary information files).

References

  1. N.Q. Minh, Solid oxide fuel cell technology—features and applications. Solid State Ion. 174, 271–277 (2004)

    Article  CAS  Google Scholar 

  2. R.M. Ormerod, Solid oxide fuel cells. Chem. Soc. Rev. 32, 17–28 (2003)

    Article  CAS  Google Scholar 

  3. Y. Ma, M. Moliere, Z. Yu, N. Fenineche, O. Elkedim, Novel chemical reaction co-precipitation method for the synthesis of apatite-type lanthanum silicate as an electrolyte in SOFC. J. Alloys Compd. 723, 418–424 (2017)

    Article  CAS  Google Scholar 

  4. P. Singh, P.K. Jha, P.A. Jha, P. Singh, Influence of sintering temperature on ion dynamics material of Na0.5Bi0.5TiO3: Suitability as an electrolyte material for SOFC. Int. J. Hydrogen Energy 45, 17006–17016 (2020)

    Article  CAS  Google Scholar 

  5. Raghvendra, R.K. Singh, P. Singh, Electrical conductivity of barium substituted LSGM electrolyte materials for IT-SOFC. Solid State Ion. 262, 428–432 (2014)

    Article  CAS  Google Scholar 

  6. O.N. Verma, P.A. Jha, P. Singh, P.K. Jha, P. Singh, Influence of iso-valent ‘Sm’ double substitution on the ionic conductivity of La0.9Sr0.1Al0.9Mg0.1O3-δ ceramic system. Mater. Chem. Phys. 241, 122345 (2020)

    Article  CAS  Google Scholar 

  7. J.A. Kilner, P. Barrow, R.J. Brook, M.J. Norgett, Electrolytes for the high temperature fuel cell; experimental and theoretical studies of the perovskite LaAlO3. J. Power Sources 3, 67–80 (1978)

    Article  CAS  Google Scholar 

  8. T. Ishihara, H. Matsuda, M.A. BinBustam, Y. Takita, Oxide ion conductivity in doped Ga based perovskite type oxide. Solid State Ion. 86–88, 197–201 (1996)

    Article  Google Scholar 

  9. K.S. McCombie, E.J. Wildman, S. Fop, R.I. Smith, J.M.S. Skakle, A.C. McLaughlin, The crystal structure and electrical properties of the oxide ion conductor Ba3WNbO8.5. J. Mater. Chem. A 6, 5290–5295 (2018)

    Article  CAS  Google Scholar 

  10. K. Fujii, Y. Esaki, K. Omoto, M. Yashima, A. Hoshikawa, T. Ishigaki, J.R. Hester, New perovskite-related structure family of oxide-ion conducting materials NdBaInO4. Chem. Mater. 26, 2488–2491 (2014)

    Article  CAS  Google Scholar 

  11. P. Huang, A. Petric, Superior oxygen ion conductiviiy of lanthanum gallate. J. Electrochem. Soc. 143, 1644–1648 (1996)

    Article  CAS  Google Scholar 

  12. A. Iakovleva, A. Chesnaud, I. Animitsa, G. Dezanneau, Insight into the synthesis and electrical properties of alkali-earth-substituted Gd3GaO6 oxide-ion and proton conductors. Int. J. Hydrogen Energy 41, 14941–14951 (2016)

    Article  CAS  Google Scholar 

  13. R.D. Purohit, A. Chesnaud, A. Lachgar, O. Joubert, M.T. Caldes, Y. Piffard, L. Brohan, Development of new oxygen ion conductors based on Nd4GeO8 and Nd3GaO6. Chem. Mater. 17, 4479–4485 (2005)

    Article  CAS  Google Scholar 

  14. H. Yamane, T. Sakamoto, M. Shimada, Gd3GaO6 by X-ray powder diffraction inorganic compounds. Acta Cryst. 55, 479–481 (1999)

    Google Scholar 

  15. S.J. Schneider, R.S. Roth, J. Waring, Solid state reactions involving oxides of trivalent cations. J. Res. Natl. Bur. Stand. 65, 345–374 (1961)

    Article  Google Scholar 

  16. F.S. Liu, Q.L. Liu, J.K. Liang, L.T. Yang, G.B. Song, J. Luo, G.H. Rao, A systematic study on crystal structure and magnetic properties of Ln3GaO6 ( Ln = Nd, Sm, Eu, Gd, Tb, Dy, Ho and Er ). J. Solid State Chem. 177, 1796–1802 (2004)

    Article  CAS  Google Scholar 

  17. P. Singh, R. Pandey, T. Miruszewski, K. Dzierzgowski, A. Mielewczyk-Gryn, P. Singh, Signature of oxide-ion conduction in alkaline-earth-metal-doped Y3GaO6. ACS Omega 47, 30395–30404 (2020)

    Article  Google Scholar 

  18. F.S. Liu, Q.L. Liu, J.K. Liang, J. Luo, L.T. Yang, G.B. Song, Y. Zhang, L.X. Wang, J.N. Yao, G.H. Rao, Crystal structure and photoluminescence of Tb3+ doped Y3GaO6. J. Alloys Compd. 425, 278–283 (2006)

    Article  CAS  Google Scholar 

  19. S. Jin, B. Liang, J.F. Li, L.Q. Ren, Effect of Al addition on phase purity of Ti3Si(Al)C2 synthesized by mechanical alloying. J. Mater. Process. Technol. 182, 445–449 (2007)

    Article  CAS  Google Scholar 

  20. Z.F. Zhang, Z.M. Sun, H. Hashimoto, T. Abe, Fabrication and microstructure characterization of Ti3SiC2 synthesized from Ti/Si/2TiC powders using the pulse discharge sintering (PDS) technique. J. Am. Ceram. Soc. 86, 431–436 (2003)

    Article  CAS  Google Scholar 

  21. G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Mater. 1, 22–31 (1995)

    Article  Google Scholar 

  22. S. Deshpande, S. Patil, S.V. Kuchibhatla, S. Seal, Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl. Phys. Lett. 87, 1–3 (2005)

    Article  Google Scholar 

  23. C. Wang, B.L. Cheng, S.Y. Wang, H.B. Lu, Y.L. Zhou, Z.H. Chen, G.Z. Yang, Effects of oxygen pressure on lattice parameter, orientation, surface morphology and deposition rate of (Ba0.02Sr0.98)TiO3 thin films grown on MgO substrate by pulsed laser deposition. Thin Solid Films 485, 82–89 (2005)

    Article  CAS  Google Scholar 

  24. D.L. Wood, Weak absorption tails in amorphous semiconductors. Phys. Rev. B 5, 3144–3151 (1972)

    Article  Google Scholar 

  25. W. Setyawan, R.M. Gaume, S. Lam, R.S. Feigelson, S. Curtarolo, High-throughput combinatorial database of electronic band structures for inorganic scintillator materials. ACS Comb. Sci. 13, 382–390 (2011)

    Article  CAS  Google Scholar 

  26. C. Rajashree, A.R. Balu, V.S. Nagarethinam, Properties of Cd doped PbS thin films: Doping concentration effect. Surf. Eng. 31, 316–321 (2015)

    Article  CAS  Google Scholar 

  27. T.S. Moss, The interpretation of the properties of indium antimonide. Proc. Phys. Soc. Sect. B 67, 775–782 (1954)

    Article  Google Scholar 

  28. I.M. Hung, H.W. Peng, S. LouZheng, C.P. Lin, J.S. Wu, Phase stability and conductivity of Ba1-ySryCe1-xYxO3-δ solid oxide fuel cell electrolyte. J. Power Sources 193, 155–159 (2009)

    Article  CAS  Google Scholar 

  29. H.D. Merchant, G.S. Murty, S.N. Bahadur, L.T. Dwivedi, Y. Mehrotra, Hardness-temperature relationships in metals. J. Mater. Sci. 8, 437–442 (1973)

    Article  CAS  Google Scholar 

  30. A. Tschöpe, Grain size-dependent electrical conductivity of polycrystalline cerium oxide. II: Space charge model. Solid State Ionics 139, 267–280 (2001)

    Article  Google Scholar 

  31. S.Y. Kuo, W.C. Chen, F.I. Lai, C.P. Cheng, H.C. Kuo, S.C. Wang, W.F. Hsieh, Effects of doping concentration and annealing temperature on properties of highly-oriented Al-doped ZnO films. J. Cryst. Growth 287, 78–84 (2006)

    Article  CAS  Google Scholar 

  32. Y. Liu, Z. Lockman, A. Aziz, J. MacManus-Driscoll, Size dependent ferromagnetism in cerium oxide (CeO2) nanostructures independent of oxygen vacancies. J. Phys. Condens. Matter 20, 165201 (2008)

    Article  Google Scholar 

  33. Q. Ji, L. Bi, J. Zhang, H. Cao, X.S. Zhao, The role of oxygen vacancies of ABO3 perovskite oxides in the oxygen reduction reaction. Energy Environ. Sci. 13, 1408–1428 (2020)

    Article  CAS  Google Scholar 

  34. M. Imamura, N. Matsubayashi, H. Shimada, Catalytically active oxygen species in La1-xSrxCoO3-δ studied by XPS and XAFS spectroscopy. J. Phys. Chem. B 104, 7348–7353 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Central Instrument Facility Centre (CIFC) at the Indian Institute of Technology (BHU), Varanasi for availing all the characterizations. The authors acknowledge the support of DST-FIST and DST-SERB for the project Grant Nos. SR/FST/PSI-203/215(C) and ECR/2016/001152, respectively.

Funding

Funding was provided by Department of Science and Technology, Ministry of Science and Technology (Grant No. SR/FST/PSI-203/215(C)), and Science and Engineering Research Board (Grant No. ECR/2016/001152).

Author information

Authors and Affiliations

Authors

Contributions

PS: Conceptualization, Sample preparation and measurements, data acquisition, analysis, Writing—original draft and visualization, RP: Review and editing and visualization, KKS: Review & editing, PS: Supervision, review and editing, and funding support.

Corresponding authors

Correspondence to Raghvendra Pandey or Prabhakar Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 423 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Pandey, R., Srivastava, K.K. et al. Examining the consequences of calcium substitution on the physical properties and conduction mechanism of Y3GaO6. J Mater Sci: Mater Electron 33, 10343–10359 (2022). https://doi.org/10.1007/s10854-022-08022-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08022-1

Navigation