Skip to main content
Log in

Synthesis and Thermoelectric Properties of Yb-doped Ca0.9−x Yb x La0.1MnO3 Ceramics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The microstructure and thermoelectric properties of Yb-doped Ca0.9−x Yb x La0.1 MnO3 (0 ≤ x ≤ 0.05) ceramics prepared by using the Pechini method derived powders have been investigated. X-ray diffraction analysis has shown that all samples exhibit single phase with orthorhombic perovskite structure. All ceramic samples possess high relative densities, ranging from 97.04% to 98.65%. The Seebeck coefficient is negative, indicating n-type conduction in all samples. The substitution of Yb for Ca leads to a marked decrease in the electrical resistivity, along with a moderate decrease in the absolute value of the Seebeck coefficient. The highest power factor is obtained for the sample with x = 0.05. The electrical conduction in these compounds is due to electrons hopping between Mn3+ and Mn4+, which is enhanced by increasing Yb content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Wang, Y. Sui, H. Fan, X. Wang, Y. Su, W. Su, and X. Liu, Chem. Mater. 21, 4653 (2009).

    Article  Google Scholar 

  2. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  3. M. Ohtaki, H. Koga, T. Tokunaga, K. Eguchi, and H. Arai, J. Solid State Chem. 120, 105 (1995).

    Article  Google Scholar 

  4. J.G. Noudem, D. Kenfaui, S. Quetel-Weben, C.S. Sanmathi, R. Retoux, and M. Gomina, J. Am. Ceram. Soc. 94, 2608 (2011).

    Article  Google Scholar 

  5. Y. Wang, Y. Sui, X. Wang, W. Su, X. Liu, and H.J. Fan, Acta Mater. 58, 6306 (2010).

    Article  Google Scholar 

  6. I. Matos, S. Sério, M. Lopes, M. Nunes, and M. Jorge, J. Alloy Compd. 509, 9617 (2011).

    Article  Google Scholar 

  7. H. Taguchi, T. Kugi, M. Kato, and K. Hirota, J. Am. Ceram. Soc. 93, 3009 (2010).

    Article  Google Scholar 

  8. S.M. Choi, C.H. Lim, and W.S. Seo, J. Electron. Mater. 40, 551 (2011).

    Article  Google Scholar 

  9. J.F. Fergus, J. Eur. Ceram. Soc. 32, 525 (2012).

    Article  Google Scholar 

  10. J. Lan, Y. Lin, A. Mei, C. Nan, Y. Liu, B. Zhang, and J. Li, J. Mater. Sci. Technol. 25, 535 (2009).

    Google Scholar 

  11. Y. Wang, Y. Sui, X. Wang, and W. Su, J. Phys. D Appl. Phys. 42, 055010 (2009).

    Article  Google Scholar 

  12. Y. Wang, Y. Sui, and W. Su, J. Appl. Phys. 104, 093703 (2008).

    Article  Google Scholar 

  13. S.G. Wang, A.M. Chang, H.M. Zhang, and Q. Zhao, Mater. Chem. Phys. 110, 83 (2008).

    Article  Google Scholar 

  14. C. Silveira, M. Lopes, M. Nunes, and M. Jorge, Solid State Ionics 180, 1702 (2010).

    Article  Google Scholar 

  15. M.A.L. Nobre and S. Lanfredi, J. Phys. Chem. Solids 64, 2457 (2003).

    Article  Google Scholar 

  16. E. Asenath-Smith, I.N. Lokuhewa, S.T. Misture, and D.D. Edwards, J. Solid State Chem. 183, 1670 (2010).

    Article  Google Scholar 

  17. X. Meng, S. Hao, J. Li, Q. Fu, and D. Fu, Powder Technol. 224, 96 (2012).

    Article  Google Scholar 

  18. K. Park and J.K. Lee, J. Alloy Compd. 475, 513 (2009).

    Article  Google Scholar 

  19. M.S. Ramachandra Rao, R. Pinto, S. Srinivas, and A.K. Bhatnagar, Appl. Supercond. 6, 11 (1998).

    Article  Google Scholar 

  20. J.G. Noudem, J. Eur. Ceram. Soc. 29, 2659 (2009).

    Article  Google Scholar 

  21. J. Noudem, D. Kenfaui, D. Chateigner, and M. Gomina, J. Electron. Mater. 40, 1100 (2011).

    Article  Google Scholar 

  22. L. Bocher, M. Aguirre, D. Logvinovich, A. Shkabko, R. Robert, M. Trottmann, and A. Weidenkaff, Inorg. Chem. 47, 8077 (2008).

    Article  Google Scholar 

  23. M. Melo Jorge, M. Nunes, R. Silva Maria, and D. Sousa, Chem. Mater. 17, 2069 (2005).

    Article  Google Scholar 

  24. P. Isasi, M. Lopes, M. Nunes, and M. Melo Jorge, J. Phys. Chem. Solids 70, 405 (2009).

    Article  Google Scholar 

  25. S.H. Chun, M.B. Salamon, Y. Lyanda-Geller, P.M. Goldbart, and P.D. Han, Phys. Rev. Lett. 84, 757 (2000).

    Article  Google Scholar 

  26. G. Jakob, W. Westerburg, F. Martin, and H. Adrian, Phys. Rev. B 58, 14966 (1998).

    Article  Google Scholar 

  27. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder, Science 321, 554 (2008).

    Article  Google Scholar 

  28. E. Verwey, P. Haaijman, F. Romeijn, and G. Van Oosterhout, Controlled-valency semiconductors. Philips Res. Rep. 5, 173 (1950).

    Google Scholar 

  29. A. Banerjee, S. Pal, S. Bhattacharya, B. Chaudhuri, and H. Yang, J. Appl. Phys. 91, 5125 (2002).

    Article  Google Scholar 

  30. K. Park, J. Am. Ceram. Soc. 88, 862 (2005).

    Article  Google Scholar 

  31. T. Hashemi and A. Brinkman, J. Mater. Res. 7, 1278 (1992).

    Article  Google Scholar 

  32. T. Taniguchi, S. Mizusaki, N. Okada, Y. Nagata, S. Lai, M. Lan, N. Hiraoka, M. Itou, Y. Sakurai, and T. Ozawa, Phys. Rev. B 77, 014406 (2008).

    Article  Google Scholar 

  33. S. Estemirova, A. Fetisov, and V. Fetisov, J. Appl. Spectrosc. 76, 394 (2009).

    Article  Google Scholar 

  34. Y. Boudeville, F. Figueras, M. Forissier, J.-L. Portefaix, and J.C. Vedrine, J. Catal. 58, 52 (1979).

    Article  Google Scholar 

  35. F. Guan, H. Zhang, A. Chang, P. Zhao, and B. Zhang, J. Mater. Sci. Mater. Electron. 23, 1728 (2012).

    Article  Google Scholar 

  36. D. Flahaut, T. Mihara, R. Funahashi, N. Nabeshima, K. Lee, H. Ohta, and K. Koumoto, J. Appl. Phys. 100, 084911 (2006).

    Article  Google Scholar 

  37. P. Liang, Z. Yang, X. Chao, and Z. Liu, J. Am. Ceram. Soc. 95, 2218 (2012).

    Article  Google Scholar 

  38. J. Hejtmanek, Z. Jirak, M. Maryško, C. Martin, A. Maignan, M. Hervieu, and B. Raveau, Phys. Rev. B 60, 14057 (1999).

    Article  Google Scholar 

  39. A. Maignan, C. Martin, F. Damay, B. Raveau, and J. Hejtmanek, Phys. Rev. B 58, 2758 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant No. 51102276), the National High Technology Research and Development Program of China (Grant No. 2012AA091102), and the European Union FP7-IRSES Project (Grant No: 295208). Bo Zhang would also like to acknowledge her scholarship from the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aimin Chang or Yiquan Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Chang, A., Zhao, Q. et al. Synthesis and Thermoelectric Properties of Yb-doped Ca0.9−x Yb x La0.1MnO3 Ceramics. J. Electron. Mater. 43, 4048–4055 (2014). https://doi.org/10.1007/s11664-014-3326-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3326-8

Keywords

Navigation