Skip to main content

Advertisement

Log in

A high-temperature-resistant die attach material based on Cu@In@Ag particles for high-power devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper presents a high-temperature-resistant preform based on Cu@In@Ag particles that can be used as a die attach material for high-power devices, using an electroless method to achieve the preparation of core–shell structure particles. Indium has a lower melting point of 156.6 °C and can be completely consumed to form intermetallic compounds of Cu2In, Ag9In4, and Ag3In, which will raise the melting point of the solder joint to over 400 °C. The silver coating is intended to enhance the oxidation resistance of the Cu@In particles and to improve the service reliability of the solder joint. It was demonstrated that high-temperature-resistant solder joints could be obtained by reflowing at 200 °C for 15 min under a pressure of 10 MPa. The shear strengths of solder joints were 29.70 MPa and 21.85 MPa at 25 °C and 300 °C, respectively. The thermal and electrical properties of the solder joints after reflow composed of Cu@In@Ag core–shell particles were tested and the thermal conductivity was 79.02 W/m K and 58.64 W/m K at 30 °C and 250 °C, respectively. Great electrical and thermal conductivity and high shear strength at high temperatures result in high-temperature reliability. As a high-temperature-resistant die attachment material, it has the potential to be used in die attachment in high-power equipment modules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The authors are in agreement with the research data policy. The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. R.W. Johnson, J.L. Evans, P. Jacobsen, J.R.R. Thompson, M. Christopher, IEEE Trans. Electron. Packag. Manuf. 27, 164–176 (2004)

    Article  Google Scholar 

  2. J. Hornberger et al., IEEE Aerospace Conference Proceedings (IEEE Aerospace Conference, Big Sky, MT, 2004), pp. 2538–2555

  3. T. Nomura, M. Masuda, N. Ikeda, S. Yoshida, IEEE Trans. Power Electron. 23, 692–697 (2008)

    Article  Google Scholar 

  4. H.S. Chin, K.Y. Cheong, A.B. Ismail, Metall. Mater. Trans. B 41, 824–832 (2010)

    Article  Google Scholar 

  5. M.D. Mathew, H. Yang, S. Movva, K.L. Murty, Metall. Mater. Trans. A 36A, 99–105 (2005)

    Article  CAS  Google Scholar 

  6. J.B. Nysaether, Z.H. Lai, J.H. Liu, IEEE Trans. Adv. Packag. 23, 743–749 (2000)

    Article  CAS  Google Scholar 

  7. J. Wang, S. Xue, P. Zhang, P. Zhai, Y. Tao, J. Mater. Sci.: Mater. Electron. 30, 9065–9086 (2019)

    CAS  Google Scholar 

  8. N. Jiang et al., Sci. Technol. Adv. Mater. 20, 876–901 (2019)

    Article  CAS  Google Scholar 

  9. D.G. Ivey, Micron 29, 281–287 (1998)

    Article  CAS  Google Scholar 

  10. J.M. Song, H.Y. Chuang, Z.M. Wu, J. Electron. Mater. 35, 1041–1049 (2006)

    Article  CAS  Google Scholar 

  11. H.J. Jiang, K.S. Moon, J.X. Lu, C.P. Wong, J. Electron. Mater. 34, 1432–1439 (2005)

    Article  CAS  Google Scholar 

  12. Q. Wang, S. Zhang, T. Lin, P. Zhang, P. He, K.W. Paik, Prog. Nat. Sci.: Mater. Int. 31, 129–140 (2021)

    Article  CAS  Google Scholar 

  13. S. Zhang et al., J. Mater. Sci.: Mater. Electron. 30, 9171–9183 (2019)

    CAS  Google Scholar 

  14. R. Khazaka, L. Mendizabal, D. Henry, J. Electron. Mater. 43, 2459–2466 (2014)

    Article  CAS  Google Scholar 

  15. K.S. Siow, J. Alloys Compd. 514, 6–19 (2012)

    Article  CAS  Google Scholar 

  16. T. Wang, X. Chen, G.Q. Lu, G.Y. Lei, J. Electron. Mater. 36, 1333–1340 (2007)

    Article  CAS  Google Scholar 

  17. Y. Li, H. Jing, Y. Han, L. Xu, G. Lu, J. Electron. Mater. 45, 3003–3012 (2016)

    Article  CAS  Google Scholar 

  18. C. Chen, C. Choe, Z. Zhang, D. Kim, K. Suganuma, J. Mater. Sci.: Mater. Electron. 29, 14335–14346 (2018)

    CAS  Google Scholar 

  19. M. Cherrington, T.C. Claypole, D. Deganello, I. Mabbett, T. Watson, D. Worsley, J. Mater. Chem. 21, 7562–7564 (2011)

    Article  CAS  Google Scholar 

  20. Y. Mei, Y. Cao, G. Chen, X. Li, G.Q. Lu, X. Chen, IEEE Trans. Device Mater. Reliab. 13, 258–265 (2013)

    Article  Google Scholar 

  21. Q. Wang, S. Zhang, G. Liu, T. Lin, P. He, J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2019.153184

    Article  Google Scholar 

  22. S. Zhang, Q. Wang, T. Lin, P. Zhang, P. He, K.W. Paik, J. Manuf. Processes 62, 546–554 (2021)

    Article  Google Scholar 

  23. B.M. Amoli, S. Gumfekar, A. Hu, Y.N. Zhou, B. Zhao, J. Mater. Chem. 22, 20048–20056 (2012)

    Article  CAS  Google Scholar 

  24. J. Bultitude, J. McConnell, C. Shearer, J. Mater. Sci.: Mater. Electron. 26, 9236–9242 (2015)

    CAS  Google Scholar 

  25. N.S. Bosco, F.W. Zok, Acta Mater. 53, 2019–2027 (2005)

    Article  CAS  Google Scholar 

  26. B.S. Lee, S.K. Hyun, J.W. Yoon, J. Mater. Sci.: Mater. Electron. 28, 7827–7833 (2017)

    CAS  Google Scholar 

  27. X. Xie et al., J. Mater. Sci.: Mater. Electron. 29, 18302–18310 (2018)

    CAS  Google Scholar 

  28. T. Hu, H. Chen, M. Li, Mater. Des. 108, 383–390 (2016)

    Article  CAS  Google Scholar 

  29. J. Liu et al., J. Mater. Sci.: Mater. Electron. 32, 14703–14714 (2021)

    CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Natural Science Foundation of Guangdong Province (No. 2019A1515011844), and the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory (No. ZHD201801), and Preliminary Research Project of Equipment Development Department of the Central Military Commission (No.31512050201).

Author information

Authors and Affiliations

Authors

Contributions

Writing—original draft preparation, XM; Writing—review and editing, XM; Conceptualization, JL; Investigation, FY; Data curation, XF; Visualization, CH; Supervision, HC; Project administration, ML.

Corresponding authors

Correspondence to Chunjin Hang or Hongtao Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

We declare that the study follows accepted principles of ethical and professional conduct.

Research involving human and animal participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, X., Liu, J., Yu, F. et al. A high-temperature-resistant die attach material based on Cu@In@Ag particles for high-power devices. J Mater Sci: Mater Electron 33, 5599–5612 (2022). https://doi.org/10.1007/s10854-022-07747-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07747-3

Navigation