Skip to main content
Log in

CH4/(Ar–H2) plasma post-treatments produce nano-diamond aggregation and improvement in field emission properties of ultrananocrystalline diamond films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We performed the CH4/(Ar–H2) plasma post-treatments on ultrananocrystalline diamond films prepared by hot filament chemical vapor deposition. The results show that during the CH4/(Ar–H2) plasma treatment, 3–5 nm diamond grains agglomerate and regrow, and the graphite between the grains transformed into diamond due to the combined action of hydrogen and tantalum atoms in the samples. This produces bigger diamond grains in size of 200 nm with a large number of stacking faults formed during the grain aggregation, and the graphite phase is greatly reduced. Moreover, the electron field emission (EFE) performance of the films is significantly improved after the CH4/(Ar–H2) plasma treatment. This suggests that the improved EFE performance is not caused by the graphite phase, but by the diamond grains with lots of stacking faults that provide transport channels for electrons. This provides a method for enhancing the EFE properties of diamond films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data sets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. N.J. Yang, S.Y. Yu, J.V. Macpherson et al., Conductive diamond: synthesis, properties, and electrochemical applications. Chem. Soc. Rev. 48, 157–204 (2019)

    Article  Google Scholar 

  2. P. Ashcheulov, A. Taylor, V. Mortet et al., Nanocrystalline boron-doped diamond as a corrosion-resistant anode for water oxidation via si photoelectrodes. ACS Appl. Mater. Interfaces 10, 29552–29564 (2018)

    Article  Google Scholar 

  3. C. Chen, Z. He, A. Xu et al., Design and optimization of diamond mid-infrared phase shifter. Functional Diamond 1, 117–124 (2021)

    Article  Google Scholar 

  4. A. Krauss, O. Auciello, M. Ding et al., Electron field emission for ultrananocrystalline diamond films. J. Appl. Phys. 89, 2958–2967 (2001)

    Article  ADS  Google Scholar 

  5. W.E. Chen, C.K. Chen, C.J. Yeh et al., Evolution of granular structure and the enhancement of electron field emission properties of nanocrystalline and ultrananocrystalline diamond films due to plasma treatment process. ACS Appl. Mater. Interfaces 10, 28726–28735 (2018)

    Article  Google Scholar 

  6. X. Hu, C. Chen, S. Lu, High mobility n-type conductive ultrananocrystalline diamond and graphene nanoribbon hybridized carbon films. Carbon 98, 671–680 (2016)

    Article  Google Scholar 

  7. S. Bhattacharyya, O. Auciello, J. Birrell et al., Synthesis and characterization of highly-conducting nitrogen-doped ultrananocrystalline diamond films. Appl. Phys. Lett. 79, 1441–1443 (2001)

    Article  ADS  Google Scholar 

  8. J. Birrell, J. Carlisle, O. Auciello et al., Morphology and electronic structure in nitrogen-doped ultrananocrystalline diamond. Appl. Phys. Lett. 81, 2235–2237 (2002)

    Article  ADS  Google Scholar 

  9. K. Sankaran, N. Tai, I. Lin, Microstructural evolution of diamond films from CH4/H2/N2 plasma and their enhanced electrical properties. J. Appl. Phys. 117, 075303 (2015)

    Article  ADS  Google Scholar 

  10. C.-S. Wang, H.-C. Chen, H.-F. Cheng, I.-N. Lin, Growth behavior of nanocrystalline diamond films on ultrananocrystalline diamond nuclei: the transmission electron microscopy studies. J. Appl. Phys. 105, 124311 (2009)

    Article  ADS  Google Scholar 

  11. H.-F. Cheng, H.-Y. Chiang, C.-C. Horng et al., Enhanced electron field emission properties by tuning the microstructure of ultrananocrystalline diamond film. J. Appl. Phys. 109, 033711 (2011)

    Article  ADS  Google Scholar 

  12. C.-J. Yeh, D. Manoharan, H.-T. Chang et al., Synthesis of ultra-nano-carbon composite materials with extremely high conductivity by plasma post-treatment process of ultrananocrystalline diamond films. Appl. Phys. Lett. 107, 083104 (2015)

    Article  ADS  Google Scholar 

  13. C. Chen, D. Fan, H. Xu et al., Monoatomic tantalum induces ordinary-pressure phase transition from graphite to n-type diamond. Carbon 196, 466–473 (2022)

    Article  Google Scholar 

  14. M. Jiang, C. Chen, P. Wang et al., Diamond formation mechanism in chemical vapor deposition. Proc. Natl. Acad. Sci. 119, e2201451119 (2022)

    Article  Google Scholar 

  15. R.H. Fowler, L. Nordheim, Electron emission in intense electric fields. Proc. R. Soc. Lond. Ser. A, Contain. Papers Math. Phys. Charact. 119, 173–181 (1928)

    ADS  Google Scholar 

  16. X. Xiao, J. Birrell, J.E. Gerbi et al., Low temperature growth of ultrananocrystalline diamond. J. Appl. Phys. 96, 2232–2239 (2004)

    Article  ADS  Google Scholar 

  17. H. Kuzmany, R. Pfeiffer, N. Salk, B. Günther, The mystery of the 1140 cm−1 Raman line in nanocrystalline diamond films. Carbon 42, 911–917 (2004)

    Article  Google Scholar 

  18. K.M. McNamara, B.E. Williams, K.K. Gleason, B.E. Scruggs, Identification of defects and impurities in chemical-vapor-deposited diamond through infrared spectroscopy. J. Appl. Phys. 76, 2466–2472 (1994)

    Article  ADS  Google Scholar 

  19. A.C. Ferrari, J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos. Trans. A Math. Phys. Eng. Sci. 362, 2477–2512 (2004)

    Article  ADS  Google Scholar 

  20. I.I. Vlasov, V.G. Ralchenko, E. Goovaerts et al., Bulk and surface-enhanced Raman spectroscopy of nitrogen-doped ultrananocrystalline diamond films. Phys. Status Solidi A-Appl. Mat. 203, 3028–3035 (2006)

    Article  ADS  Google Scholar 

  21. P. Lespade, R. Al-Jishi, M.S. Dresselhaus, Model for Raman scattering from incompletely graphitized carbons. Carbon 20, 427–431 (1982)

    Article  Google Scholar 

  22. J. Wagner, C. Wild, P. Koidl, Resonance effects in Raman-scattering from polycrystalline diamond films. Appl. Phys. Lett. 59, 779–781 (1991)

    Article  ADS  Google Scholar 

  23. Y. Tzeng, C. Liu, A. Hirata, Effects of oxygen and hydrogen on electron field emission from microwave plasma chemically vapor deposited microcrystalline diamond, nanocrystalline diamond, and glassy carbon coatings. Diamond Relat. Mater. 12, 456–463 (2003)

    Article  ADS  Google Scholar 

  24. C.Z. Gu, Z.S. Jin, Y.G. Wang et al., Electron emission from diamond thin films deposited by microwave plasma-chemical vapor deposition method. Diamond Relat. Mater. 9, 1604–1607 (2000)

    Article  ADS  Google Scholar 

  25. J. Peng, J. Orwa, B. Jiang et al., Nano-crystals of c-diamond, n-diamond and i-carbon grown in carbon-ion implanted fused quartz. Int. J. Mod. Phys. B 15, 3107–3123 (2001)

    Article  ADS  Google Scholar 

  26. W.-L. Wang, S.-M. Wang, S.-Y. Cho, L. Chang, Fabrication and structural property of diamond nano-platelet arrays on {111) textured diamond film. Diamond Relat. Mater. 25, 155–158 (2012)

    Article  ADS  Google Scholar 

  27. P. Kovarik, E. Bourdon, R. Prince, Electron-energy-loss characterization of laser-deposited a-C, a-C: H, and diamond films. Phys. Rev. B 48, 12123 (1993)

    Article  ADS  Google Scholar 

  28. S. Prawer, J. Peng, J. Orwa et al., Size dependence of structural stability in nanocrystalline diamond. Phys. Rev. B 62, R16360 (2000)

    Article  ADS  Google Scholar 

  29. S.-C. Lin, C.-J. Yeh, D. Manoharan et al., Microstructural evolution of nanocrystalline diamond films due to CH4/Ar/H-2 plasma post-treatment process. ACS Appl. Mater. Interfaces 7, 21844–21851 (2015)

    Article  Google Scholar 

  30. I. Blum, M. Borz, O. Torresin et al., Effect of electrical conduction on the electron emission properties of diamond needles. New J. Phys. 22, 083044 (2020)

    Article  ADS  Google Scholar 

  31. P. Gonon, Y. Boiko, S. Prawer, D. Jamieson, Poole-Frenkel conduction in polycrystalline diamond. J. Appl. Phys. 79, 3778–3780 (1996)

    Article  ADS  Google Scholar 

  32. P.W. May, S. Hohn, M.N.R. Ashfold et al., Field emission from chemical vapor deposited diamond and diamond-like carbon films: investigations of surface damage and conduction mechanisms. J. Appl. Phys. 84, 1618–1625 (1998)

    Article  ADS  Google Scholar 

  33. N. Lehto, Shallow electron states of bounded intrinsic stacking faults in silicon. Phys. Rev. B 55, 15601–15607 (1997)

    Article  ADS  Google Scholar 

  34. W. Zhu, G.P. Kochanski, S. Jin, L. Seibles, Defect-enhanced electron field-emission from chemical-vapor-deposited diamond. J. Appl. Phys. 78, 2707–2711 (1995)

    Article  ADS  Google Scholar 

  35. C. Chen, Z. He, W.-E. Chen et al., Plasma post-treatment process-induced grain coalescence to improve the electron field-emission properties of ultrananocrystalline diamond films. Phys. Status Solidi A-Appl. Mat. 219, 2200362 (2022)

    Article  ADS  Google Scholar 

  36. M.L. Terranova, S. Orlanducci, M. Rossi, E. Tamburri, Nanodiamonds for field emission: state of the art. Nanoscale 7, 5094–5114 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 52102052 and 52002351), the Key Project of National Natural Science Foundation of China (Grant No. U1809210), the One Belt and One Road International Cooperation Project from Key Research and Development Program of Zhejiang Province (Grant No. 2018C04021).

Author information

Authors and Affiliations

Authors

Contributions

XH: contributed in funding acquisition, conceptualization, supervision, writing, reviewing, and editing. CC: took care of investigation, data curation, writing the original draft, and visualization. YZ: took care of investigation, data curation, and writing the original draft. CRY: took care of investigation and data curation. INL: took care of writing, reviewing, and editing. MJ: took care of writing, reviewing, and editing. XL: took care of writing, reviewing, and editing. SL: took care of writing, reviewing, and editing.

Corresponding author

Correspondence to Xiaojun Hu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Zhang, Y., Yeh, CR. et al. CH4/(Ar–H2) plasma post-treatments produce nano-diamond aggregation and improvement in field emission properties of ultrananocrystalline diamond films. Appl. Phys. A 130, 47 (2024). https://doi.org/10.1007/s00339-023-07193-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07193-w

Keywords

Navigation