Skip to main content
Log in

Porous Si/Cu6Sn5/C composite containing native oxides as anode material for lithium-ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Porous Si/Cu6Sn5/C composite containing native oxides was prepared via solid-state mechanical milling and wet chemical etching. This composite was used as anode material for Li-ion batteries. X-ray diffraction, scanning electron microscopy, 119Sn Mössbauer spectroscopy, and X-ray photoelectron spectroscopy show that the composite has a pitaya-like morphology based on porous Si and embedded Cu6Sn5 non-porous microparticles with surface native oxides. Both Si and Cu6Sn5 are electrochemically active, and the activation process during the first charge–discharge improves the nanostructuration of the composite that helps buffer the volume variations of the Li-Si and Li-Sn alloying reactions. The porous composite delivers a reversible and stable capacity of 900 mAh g−1 at a galvanostatic current density of 422 mA g−1 with a retention of 90% for 100 cycles, which is higher than porous Si (53%). The stability during cycling is explained by buffering effect, enhanced electrode conductivity, and stable SEI due to the presence of native oxides and the use of FEC-containing electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W. Cao, K. Han, M. Chen, H. Ye, S. Sang, Electrochim. Acta 320, 134613 (2019)

    Article  CAS  Google Scholar 

  2. Z. Yi, N. Lin, Y. Zhao, W. Wang, Y. Qian, Y. Zhu, Y. Qian, Energy Storage Mater. 17, 93 (2019)

    Article  Google Scholar 

  3. X.T. Cheng Li, X. Li, Y.Z. Zheng, W. Jiaojiao, H. Ding, ChemElectroChem 6, 2517 (2019)

    Article  Google Scholar 

  4. L. Cao, T. Huang, Q. Zhang, M. Cui, J. Xu, R. Xiao, A.C.S. Appl, Mater. Interfaces 12, 57071 (2020)

    Article  CAS  Google Scholar 

  5. X.F. Tan, W. Yang, K. Aso, S. Matsumura, S.D. McDonald, K. Nogita, A.C.S. Appl, Energy Mater. 3, 141 (2020)

    CAS  Google Scholar 

  6. T.F. Yi, Y. Xie, Y.R. Zhu, R.S. Zhu, H. Shen, J. Power Sour 222, 448 (2013)

    Article  CAS  Google Scholar 

  7. T.F. Yi, J. Mei, P.P. Peng, S. Luo, Compos. B: Eng. 167, 566 (2019)

    Article  CAS  Google Scholar 

  8. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nature 407, 496 (2000)

    Article  CAS  Google Scholar 

  9. T.F. Yi, J.P. Qu, X. Lai, X. Han, H. Chang, Y.R. Zhu, Mater. Today Chem. 19, 100407 (2021)

    Article  CAS  Google Scholar 

  10. Y. Jin, B. Zhu, Z. Lu, N. Liu, J. Zhu, Adv. Energy Mater. 7, 1700715 (2017)

    Article  Google Scholar 

  11. M.N. Obrovac, L.J. Krause, J. Electrochem. Soc. 154, A103 (2007)

    Article  CAS  Google Scholar 

  12. J. Li, J.R. Dahn, J. Electrochem. Soc. 154, 156 (2007)

    Article  Google Scholar 

  13. X.L. Wang, W.Q. Han, J. Chen, J. Graetz, A.C.S. Appl, Mater. Interfaces 2, 1548 (2010)

    Article  CAS  Google Scholar 

  14. D. Larcher, L.Y. Beaulieu, D.D. MacNeil, J.R. Dahn, J. Electrochem. Soc. 147, 1658 (2000)

    Article  CAS  Google Scholar 

  15. L. Fransson, E. Nordström, K. Edström, L. Häggström, J.T. Vaughey, M.M. Thackeray, J. Electrochem. Soc. 149, 736 (2002)

    Article  Google Scholar 

  16. S. Naille, R. Dedryvère, H. Martinez, S. Leroy, P.E. Lippens, J.C. Jumas, D. Gonbeau, J. Power Sour. 174, 1086 (2007)

    Article  CAS  Google Scholar 

  17. A.Y. Kim, J.S. Kim, C. Hudaya, D. Xiao, D. Byun, L. Gu, X. Wei, Y. Yao, R. Yu, J.K. Lee, Carbon N. Y. 94, 539 (2015)

    Article  CAS  Google Scholar 

  18. Z. Wang, K. Dong, D. Wang, S. Luo, Y. Liu, Q. Wang, Y. Zhang, A. Hao, C. Shi, N. Zhao, J. Power Sour 441, 227191 (2019)

    Article  CAS  Google Scholar 

  19. B. Gangaja, S. Chandrasekharan, S. Vadukumpully, S.V. Nair, D. Santhanagopalan, J. Power Sour. 340, 356 (2017)

    Article  CAS  Google Scholar 

  20. R.C. Reno, M.J. Panunto, J. Electron. Mater. 26, 11 (1997)

    Article  CAS  Google Scholar 

  21. K. Cao, H. Liu, W. Li, Q. Han, Z. Zhang, K. Huang, Small 1901775, 1 (2019)

    Google Scholar 

  22. X.F. Tan, S.D. McDonald, Q. Gu, Y. Hu, L. Wang, S. Matsumura, T. Nishimura, K. Nogita, J. Power Sour. 415, 50 (2019)

    Article  CAS  Google Scholar 

  23. Q.G. Han, Z. Yi, Y. Cheng, Y. Wu, L.M. Wang, RSC Adv. 6, 15279 (2016)

    Article  CAS  Google Scholar 

  24. E. Radvanyi, W. Porcher, E. De Vito, A. Montani, S. Franger, S.J.S. Larbi, Phys. Chem. Chem. Phys. 16, 17142 (2014)

    Article  CAS  Google Scholar 

  25. M. Gauthier, D. Mazouzi, D. Reyter, B. Lestriez, P. Moreau, D. Guyomard, L. Roué, Energy Environ. Sci. 6, 2145 (2013)

    Article  CAS  Google Scholar 

  26. T. Jaumann, J. Balach, U. Langklotz, V. Sauchuk, M. Fritsch, A. Michaelis, V. Teltevskij, D. Mikhailova, S. Oswald, M. Klose, G. Stephani, R. Hauser, J. Eckert, L. Giebeler, Energy Storage Mater. 6, 26 (2017)

    Article  Google Scholar 

  27. V. Etacheri, O. Haik, Y. Goffer, G.A. Roberts, I.C. Stefan, R. Fasching, D. Aurbach, Langmuir 28, 965 (2012)

    Article  CAS  Google Scholar 

  28. L. Chen, X. Xie, B. Wang, K. Wang, J. Xie, Mater. Sci. Eng. B 131, 186 (2006)

    Article  CAS  Google Scholar 

  29. Q. Li, X. Liu, X. Han, Y. Xiang, G. Zhong, J. Wang, B. Zheng, J. Zhou, Y. Yang, A.C.S. Appl, Mater. Interfaces 11, 14066 (2019)

    Article  CAS  Google Scholar 

  30. F. Holtstiege, P. Bärmann, R. Nölle, M. Winter, T. Placke, Batteries 4, 1 (2018)

    Article  Google Scholar 

  31. Z. Yi, N. Lin, Y. Zhao, W. Wang, Y. Qian, Y. Zhu, Y. Qian, Energy Storage Mater. 17, 93 (2018)

    Article  Google Scholar 

  32. Y. Yang, X. Qu, L. Zhang, M. Gao, Y. Liu, H. Pan, A.C.S. Appl, Mater. Interfaces 10, 20591 (2018)

    Article  CAS  Google Scholar 

  33. B. Rangasamy, J.Y. Hwang, W. Choi, Carbon N. Y. 77, 1065 (2014)

    Article  CAS  Google Scholar 

  34. W. An, B. Gao, S. Mei, B. Xiang, J. Fu, L. Wang, Q. Zhang, P.K. Chu, K. Huo, Nat. Commun. 10, 1 (2019)

    Article  Google Scholar 

  35. L. Lin, Y. Ma, Q. Xie, L. Wang, Q. Zhang, and D. L. Peng, ACS Nano 11, 6893 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Project of National Natural Science Foundation (NSFC 21650110463), the Southwest Petroleum University key project (KSZ16083) and China scholarship council (CSC) program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yawen He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Ye, Z., Chamas, M. et al. Porous Si/Cu6Sn5/C composite containing native oxides as anode material for lithium-ion batteries. J Mater Sci: Mater Electron 33, 235–243 (2022). https://doi.org/10.1007/s10854-021-07288-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07288-1

Navigation