Skip to main content
Log in

Facile and rapid fabrication of conductive layers on flexible polymer surfaces and their application to flexible strain sensors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The advantage of building a conductive network on the surface layer of a flexible substrate is that it has less impact on the elastic recovery properties of the substrate, which is particularly important for flexible strain sensors. However, the facile construction of robust conductive layers on the surface of flexible polymers remains a challenge. Herein, a method for constructing robust conductive layers on the surface of thermoplastic polymers was developed by immersing thermoplastic polymers in a solvent/conductive filler dispersion with the assistance of ultrasound. The solubility of the solvent in the flexible polymer and ultrasonic field are key to the preparation of the conductive layer. This method has the advantages of fast preparation and robustness of the conductive layer and can be applied to thermoplastic polymers of different polarities as well as different types of conductive fillers. Based on this method, a flexible strain sensor with a robust carbon black conductive layer on the styrene–butadiene–styrene block copolymer was prepared in as short as 2 s. The advantages of a broad strain detection range (0.1% to 400%) and robust cyclability of the sensors were exhibited. The sensors can be used for human motion monitoring as well as solvent detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Liu, Q. Li, Y. Bu et al., Stretchable conductive nonwoven fabrics with self-cleaning capability for tunable wearable strain sensor. Nano Energy 66, 104143 (2019). https://doi.org/10.1016/j.nanoen.2019.104143

    Article  CAS  Google Scholar 

  2. Y. Wang, J. Zhang, Y. Wang et al., Integrated flexible piezoresistive pressure sensor based on CB/CNTs/SR composite with SR buffer layer for wide sensing range. J. Mater. Sci. Mater. Electron. 31, 21557–21568 (2020). https://doi.org/10.1007/s10854-020-04669-w

    Article  CAS  Google Scholar 

  3. X. Sun, F. Yao, J. Li, Nanocomposite hydrogel-based strain and pressure sensors: a review. J. Mater. Chem. A 8, 18605–18623 (2020). https://doi.org/10.1039/d0ta06965e

    Article  CAS  Google Scholar 

  4. H. Wu, Q. Liu, W. Du et al., A transparent polymeric strain sensors for monitoring vital signs and beyond. ACS Appl. Mater. Interfaces 10, 3895–3901 (2018). https://doi.org/10.1021/acsami.7b19014

    Article  CAS  Google Scholar 

  5. H.M. Soe, A.A. Manaf, A. Matsuda et al., Development and fabrication of highly flexible, stretchable, and sensitive strain sensor for long durability based on silver nanoparticles–polydimethylsiloxane composite. J. Mater. Sci. Mater. Electron. 31, 11897–11910 (2020). https://doi.org/10.1007/s10854-020-03744-6

    Article  CAS  Google Scholar 

  6. H. Liu, X. Chen, Y. Zheng et al., Lightweight, superelastic, and hydrophobic polyimide nanofiber/MXene composite aerogel for wearable piezoresistive sensor and oil/water separation applications. Adv. Funct. Mater. 31, 2008006 (2021). https://doi.org/10.1002/adfm.202008006

    Article  CAS  Google Scholar 

  7. C. Wu, T. Zhang, J. Zhang et al., A new approach for an ultrasensitive tactile sensor covering an ultrawide pressure range based on the hierarchical pressure-peak effect. Nanoscale Horiz. 5, 541–552 (2020). https://doi.org/10.1039/c9nh00671k

    Article  CAS  Google Scholar 

  8. S. Yang, C. Li, X. Chen et al., Facile fabrication of high-performance pen ink-decorated textile strain sensors for human motion detection. ACS Appl. Mater. Interfaces 12, 19874–19881 (2020). https://doi.org/10.1021/acsami.9b22534

    Article  CAS  Google Scholar 

  9. F. Sun, K. Wu, H.C. Hung et al., Paper sensor coated with a poly(carboxybetaine)-multiple DOPA conjugate via dip-coating for biosensing in complex media. Anal. Chem. 89, 10999–11004 (2017). https://doi.org/10.1021/acs.analchem.7b02876

    Article  CAS  Google Scholar 

  10. J. Jia, G. Huang, J. Deng et al., Skin-inspired flexible and high-sensitivity pressure sensors based on rGO films with continuous-gradient wrinkles. Nanoscale 11, 4258–4266 (2019). https://doi.org/10.1039/c8nr08503j

    Article  CAS  Google Scholar 

  11. C. Liu, T. Xu, D. Wang, X. Zhang, The role of sampling in wearable sweat sensors. Talanta 212, 120801 (2020). https://doi.org/10.1016/j.talanta.2020.120801

    Article  CAS  Google Scholar 

  12. H. Liu, Q. Li, S. Zhang et al., Electrically conductive polymer composites for smart flexible strain sensors: a critical review. J. Mater. Chem. C 6, 12121–12141 (2018). https://doi.org/10.1039/c8tc04079f

    Article  CAS  Google Scholar 

  13. L. Wu, D. Yao, X. Gao et al., An efficient flexible strain sensor based on anhydride-grafted styrene–butadiene–styrene triblock copolymer/carbon black: enhanced electrical conductivity, sensitivity and stability through solvent swelling. Smart Mater. Struct. 29, 125018 (2020). https://doi.org/10.1088/1361-665X/abc26d

    Article  CAS  Google Scholar 

  14. Y. Zheng, Y. Li, K. Dai et al., A highly stretchable and stable strain sensor based on hybrid carbon nanofillers/polydimethylsiloxane conductive composites for large human motions monitoring. Compos. Sci. Technol. 156, 276–286 (2018). https://doi.org/10.1016/j.compscitech.2018.01.019

    Article  CAS  Google Scholar 

  15. X. Wang, S. Meng, M. Tebyetekerwa et al., Highly sensitive and stretchable piezoresistive strain sensor based on conductive poly(styrene–butadiene–styrene)/few layer graphene composite fiber. Composites A 105, 291–299 (2018). https://doi.org/10.1016/j.compositesa.2017.11.027

    Article  CAS  Google Scholar 

  16. S. Yu, X. Wang, H. Xiang et al., Superior piezoresistive strain sensing behaviors of carbon nanotubes in one-dimensional polymer fiber structure. Carbon 140, 1–9 (2018). https://doi.org/10.1016/j.carbon.2018.08.028

    Article  CAS  Google Scholar 

  17. J. Lin, X. Cai, Z. Liu et al., Anti-liquid-interfering and bacterially antiadhesive strategy for highly stretchable and ultrasensitive strain sensors based on Cassie-Baxter wetting state. Adv. Funct. Mater. 30, 2000398 (2020). https://doi.org/10.1002/adfm.202000398

    Article  CAS  Google Scholar 

  18. W. Zhai, Q. Xia, K. Zhou et al., Multifunctional flexible carbon black/polydimethylsiloxane piezoresistive sensor with ultrahigh linear range, excellent durability and oil/water separation capability. Chem. Eng. J. 372, 373–382 (2019). https://doi.org/10.1016/j.cej.2019.04.142

    Article  CAS  Google Scholar 

  19. Y. Wang, Y. Jia, Y. Zhou et al., Ultra-stretchable, sensitive and durable strain sensors based on polydopamine encapsulated carbon nanotubes/elastic bands. J. Mater. Chem. C 6, 8160–8170 (2018). https://doi.org/10.1039/c8tc02702a

    Article  CAS  Google Scholar 

  20. Y. Yang, L. Shi, Z. Cao et al., Strain sensors with a high sensitivity and a wide sensing range based on a Ti3C2Tx(MXene) nanoparticle–nanosheet hybrid network. Adv. Funct. Mater. 29, 1807882 (2019). https://doi.org/10.1002/adfm.201807882

    Article  CAS  Google Scholar 

  21. G. Lee, G.Y. Bae, J.H. Son et al., User-interactive thermotherapeutic electronic skin based on stretchable thermochromic strain sensor. Adv. Sci. 7, 2001184 (2020). https://doi.org/10.1002/advs.202001184

    Article  CAS  Google Scholar 

  22. Y. Chen, L. Wang, Z. Wu et al., Super-hydrophobic, durable and cost-effective carbon black/rubber composites for high performance strain sensors. Composites B 176, 107358 (2019). https://doi.org/10.1016/j.compositesb.2019.107358

    Article  CAS  Google Scholar 

  23. G.J. Zhu, P.G. Ren, H. Guo et al., Highly sensitive and stretchable polyurethane fiber strain sensors with embedded silver nanowires. ACS Appl. Mater. Interfaces 11, 23649–23658 (2019). https://doi.org/10.1021/acsami.9b08611

    Article  CAS  Google Scholar 

  24. D. Yao, L. Wu, S. Peng et al., Use of surface penetration technology to fabricate superhydrophobic multifunctional strain sensors with an ultrawide sensing range. ACS Appl. Mater. Interfaces 13, 11284–11295 (2021). https://doi.org/10.1021/acsami.0c22554

    Article  CAS  Google Scholar 

  25. D. Zhou, J. Hao, A. Clark et al., Sono-assisted surface energy driven assembly of 2D materials on flexible polymer substrates: a green assembly method using water. ACS Appl. Mater. Interfaces 11, 33458–33464 (2019). https://doi.org/10.1021/acsami.9b10469

    Article  CAS  Google Scholar 

  26. J. Shen, Y. He, J. Wu et al., Liquid phase exfoliation of two-dimensional materials by directly probing and matching surface tension components. Nano Lett. 15, 5449–5454 (2015). https://doi.org/10.1021/acs.nanolett.5b01842

    Article  CAS  Google Scholar 

  27. S. Yu, X. Wang, H. Xiang et al., 1-D polymer ternary composites: understanding materials interaction, percolation behaviors and mechanism toward ultra-high stretchable and super-sensitive strain sensors. Sci. China Mater. 62, 995–1004 (2019). https://doi.org/10.1007/s40843-018-9402-1

    Article  CAS  Google Scholar 

  28. Y. Lin, S. Liu, S. Chen et al., Highly stretchable and sensitive strain sensor based on grapheme elastomer composites with a novel double-interconnected network. J. Mater. Chem. C 4, 6345–6352 (2016). https://doi.org/10.1039/x0xx00000x

    Article  CAS  Google Scholar 

  29. Z. Shen, J. Feng, Mass-produced SEBS/graphite nanoplatelet composites with a segregated structure for highly stretchable and recyclable strain sensors. J. Mater. Chem. C 7, 9423–9429 (2019). https://doi.org/10.1039/c9tc02321f

    Article  CAS  Google Scholar 

  30. K. Yang, F. Yin, D. Xia et al., A highly flexible and multifunctional strain sensor based on a network-structured MXene/polyurethane mat with ultra-high sensitivity and a broad sensing range. Nanoscale 11, 9949–9957 (2019). https://doi.org/10.1039/c9nr00488b

    Article  CAS  Google Scholar 

  31. C.G. Zhou, W.J. Sun, L.C. Jia et al., Highly stretchable and sensitive strain sensor with porous segregated conductive network. ACS Appl. Mater. Interfaces 11, 37094–37102 (2019). https://doi.org/10.1021/acsami.9b12504

    Article  CAS  Google Scholar 

  32. W. Li, Y. Zhou, Y. Wang et al., Highly stretchable and sensitive SBS/graphene composite fiber for strain sensors. Macromol. Mater. Eng. 305, 1900736 (2020). https://doi.org/10.1002/mame.201900736

    Article  CAS  Google Scholar 

  33. B. Qin, B. Li, J. Zhang et al., Highly sensitive strain sensor based on stretchable sandwich-type composite of carbon nanotube and poly(styrene–butadiene–styrene). Sens. Actuators A 315, 112357 (2020). https://doi.org/10.1016/j.sna.2020.112357

    Article  CAS  Google Scholar 

  34. L. Cheng, J. Feng, Facile fabrication of stretchable and compressible strain sensors by coating and integrating low-cost melamine foam scaffolds with reduced graphene oxide and poly (styrene-b-ethylene–butylene-b-styrene). Chem. Eng. J. 398, 125429 (2020). https://doi.org/10.1016/j.cej.2020.125429

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51673059); the Project National United Engineering Laboratory for Advanced Bearing Tribology of Henan University of Science and Technology (No. 201813).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dahu Yao or Chang Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5455 kb)

Supplementary file2 (MP4 2457 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Yao, D., Gao, X. et al. Facile and rapid fabrication of conductive layers on flexible polymer surfaces and their application to flexible strain sensors. J Mater Sci: Mater Electron 32, 27305–27317 (2021). https://doi.org/10.1007/s10854-021-07100-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07100-0

Navigation