Skip to main content
Log in

Enhanced electrical conductivity of ceria electrolyte doped with samarium (Ce 0.8− x Zr x Sm 0.2 O 2−δ ) for solid oxide fuel cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To affluence the ionic conductivity enhancement in Cerium Oxide (CeO2) for low temperature solid oxide fuel cells (LT-SOFCs), we report synthesis of Zr substituted, Samarium doped Ceria (SDC) via chemical procedure. Substitution of Zr has assisted the stabilizing of majority Ceria as Ce4+ and improved the ionic conductivity considerably. The cubic fluorite structure of CeO2 was supported by Raman spectroscopy and X-ray diffraction (XRD). Particle’s morphology is studied using SEM, TEM which revealed size of CeO2 as 20 nm. Valence state of cations and concentration of Ce4+ are proven through X-ray photo electron spectroscopy (XPS). This result confirms 50% upsurge in tetravalent Cerium concentration (from 56 to 84%) which influences the ionic conductivity. The x = 0.075 composition revelations greater ionic conductivity of 0.528 × 10–1(S cm−1) at 750 °C in comparison with other ‘x’ configurations. The substitution of Zr4+ in SDC stabilizes the cubic fluorite structure and promotes oxygen vacancies enhancing ionic conducting nature. The elevated ionic conductivity value and stability of Ce4+ the present work proposes that the prepared materials are promising ionic conductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Q. Zhou, Y. He, F. Bu et al., Comparative studies of BaBi0.05Zr0.1Co0.85−xNbxO3−δ (x = 0 and 0.05) as cathodes for intermediate-temperature solid oxide fuel cells. J. Mater. Sci.: Mater. Electron. 31, 11819–11824 (2020)

    CAS  Google Scholar 

  2. S. Jamila, M.H.D. Othmana, M.A. Rahmana, J. Jaafara, A.F. Ismaila, K. Lib, Recent fabrication techniques for micro-tubular solid oxide fuel cell support: a review. J. Eur. Ceram. Soc. 35, 1–22 (2015)

    Article  CAS  Google Scholar 

  3. X. Zhu, H. Yan, Q. Zhong et al., Ce0.9Sr0.1Cr0.5Mn0.5O3−δ as the anode materials for solid oxide fuel cells running on H2 and H2S. Korean J. Chem. Eng. 28, 1764 (2011)

    Article  CAS  Google Scholar 

  4. C. Tian, J. Cheng, J. Yang, A highly active cathode material of Cu-doped Sr2Fe1.5Mo0.5O6 for symmetrical solid oxide fuel cells. J. Mater. Sci.: Mater. Electron. 32, 1258–1264 (2021)

    CAS  Google Scholar 

  5. M. Bradha, S. Hussain, S. Chakravarty, G. Amarendra, A. Ashok, Total conductivity in Sc-doped LaTiO3+δ perovskites. Ionics 20(9), 1343–1350 (2014)

    Article  CAS  Google Scholar 

  6. J. Li, Y. Lu, D. Li et al., Semiconductor heterostructure composite materials of Fe2O3 and CeO2 for low-temperature solid oxide fuel cells. J. Mater. Sci.: Mater. Electron. 31, 11825–11832 (2020)

    CAS  Google Scholar 

  7. Z. Ma, X. Wang, Y. Yang et al., Numerical modeling of ethanol-fueled solid oxide fuel cells with a Ni-BaZr0.1Ce0.7 Y0.1Yb0.1O3–δ external reformer. Ionics 26, 4587–4598 (2020)

    Article  CAS  Google Scholar 

  8. R. Li, C. Zhang, J. Liu et al., Effect of B-site deficiency on the (In, Fe) co-doped SrTiO3. Appl. Phys. A 125, 773 (2019)

    Article  CAS  Google Scholar 

  9. H. Ibach, H. Lüth, Solid-State Physics, 2nd edn. (Springer, Dordrecht, 1996), pp. 45–56

    Book  Google Scholar 

  10. P. Costa, C.M. Costa, S. Lanceros-Mendez, Advanced Lightweight Multifunctional Materials, 1st edn. (Woodhead Publishing, Sawston, 2020), p. 153

    Google Scholar 

  11. A.O. Turky, A.E. Shalan, E.M. Ewais, H. Zhao, M. Bechelany, M.M. Rashad, Achieving exceedingly constructional characterization of magnesia-yttria (MgO-Y2O3) nanocomposite obtained via oxalate precursor strategy. Measurement 150, 106888 (2020)

    Article  Google Scholar 

  12. M.F. Sanad, A.E. Shalan, S.O. Abdellatif, E.S. Serea, M.S. Adly, M.A. Ahsan, Thermoelectric energy harvesters: a review of recent developments in materials and devices for different potential applications. Top Curr Chem (Z) 378, 48 (2020)

    Article  CAS  Google Scholar 

  13. K. Valadi, S. Gharibi, R. Taheri-Ledari, S. Akin, A. Maleki, A.E. Shalan, Metal oxide electron transport materials for perovskite solar cells: a review. Environ. Chem. Lett. 19, 2185–2207 (2021)

    Article  CAS  Google Scholar 

  14. B. Wang, J. Kang, Y. Yang et al., Optimization electrochemical performance and thermal compatibility via SmBa0.5Sr0.5CoCuO5+δ and Ce0.9Gd0.1O1.95 composite cathodes for intermediate-temperature solid oxide fuel cells. J. Mater. Sci.: Mater. Electron. 31, 14614–14624 (2020)

    CAS  Google Scholar 

  15. R. Shen, J. Nie, K. Wang et al., Applying multifunctional perovskite LaNiO3 as electrolyte and anode for low-temperature solid oxide fuel cell. J. Mater. Sci.: Mater. Electron. 32, 4196–4204 (2021)

    CAS  Google Scholar 

  16. Y. Nojiri, S. Tanase, M. Iwasa, H. Yoshioka, T. Sakai, Ionic conductivity of apatite-type solid electrolyte material, La10- XBaXSi6O 27- X/2 (X = 0–1), and its fuel cell performance. J. Power Sour. 195, 4059–4064 (2010)

    Article  CAS  Google Scholar 

  17. A. Kalpana Devi, G. Ram Kumar, C. Prerna et al., Superionic conductive La3+ and Pr3+ Co-doped cerium oxide for IT-SOFC applications. J. Mater. Sci. Mater. Electron. 31, 10628–10638 (2020)

    Article  CAS  Google Scholar 

  18. G. Yin, H. Yin, H. Zhu, X. Wu, L. Zhong, M. Sun, R. Cong, J. Zhang, W. Gao, Q. Cui, High-pressure phase transition and unusual compressibility of apatite-type La10Si6O27. J. Alloys Compd. 586, 279–284 (2014)

    Article  CAS  Google Scholar 

  19. N. Jaiswal, D. Kumar, S. Upadhyay et al., Preparation and characterization of Ce0.85La0.15 − xSrxO{2 − (0.075 + x / 2)} solid electrolytes for intermediate temperature solid oxide fuel cells. Ionics 21, 497–505 (2015)

    Article  CAS  Google Scholar 

  20. H.L. Liu, X.H. Du, Z.W. Yu, D. Tang, T. Zhang, The phase evolution, electrical stability and chemical compatibility of sealing glass-ceramics for solid oxide fuel cell applications: effect of La2O3 or CeO2. RSC Adv. 6, 17151–17157 (2016)

    Article  CAS  Google Scholar 

  21. S. He, H. Dai, X. Chen et al., Investigation of La0.75Sr0.25Cr0.5Mn0.5O3-δ–Ag composite anodes for solid oxide fuel cells obtained via a low-temperature sintering process. Ionics 26, 6225–6232 (2020)

    Article  CAS  Google Scholar 

  22. S. He, H. Dai, G. Cai, H. Chen, L. Guo, Optimization of La0.75Sr0.25Cr0.5Mn0.5O3-δ–Ce0.8Sm0.2O1.9 compositionally graded anode functional layer. Electrochim. Acta 152, 155–160 (2015)

    Article  CAS  Google Scholar 

  23. M.R. Benjaram, K. Lakshmi, T. Gode, Novel nanocrystalline Ce1-xLaxO2-delta (x ¼ 0.2) solid solutions structural characteristics and catalytic performance. Chem. Mater. 22, 467–475 (2010)

    Article  CAS  Google Scholar 

  24. D.D.Y. Setsoafia, P. Hing, S.C. Jung, A.K. Azad, C.M. Lim, Sol-gel synthesis and characterization of Zn2þ and Mg2þ doped La10Si6O27 electrolytes for solid oxide fuel cells. Solid State Sci. 48, 163–170 (2015)

    Article  CAS  Google Scholar 

  25. J. Xiang, J.H. Ouyang, Z.G. Liu, G.C. Qi, Influence of pentavalent niobium doping on microstructure and electrical conductivity of oxyapatite La10Si6O27 electrolytes. Electrochim. Acta 153, 287–294 (2015)

    Article  CAS  Google Scholar 

  26. M. Bradha, T. Vijayaraghavan, A. Anuradha, Synthesis and total conductivity studies in BaSnO3. Mater. Lett. 125, 187–190 (2014)

    Article  CAS  Google Scholar 

  27. S. Usharani, V. Rajendran, Morphologically controlled synthesis, structural and optical properties of CeO2/SnO2 nano composites. J. Sci. Adv. Mater. Dev. 2, 333–339 (2017)

    Google Scholar 

  28. T. Vijayaraghavan, M. Bradha, P. Babu, K.M. Parida, G. Ramadoss, S. Vadivel, R. Selvakumar, A. Ashok, Influence of secondary oxide phases in enhancing the photocatalytic properties of alkaline earth elements doped LaFeO3 nanocomposites. J. Phy. Chem. Solids 140, 109377 (2020)

    Article  CAS  Google Scholar 

  29. A.A. Ansari, M. Alam, Electrochemical sensitive detection of hydrazine through cobalt-doped cerium oxide nanostructured platform. J. Mater. Sci.: Mater. Electron. (2021). https://doi.org/10.1007/s10854-021-05965-9

    Article  Google Scholar 

  30. N. Hareesha, J.G. Manjunatha, A simple and low-cost poly (dl-phenylalanine) modified carbon sensor for the improved electrochemical analysis of Riboflavin. J. Sci. Adv. Mater. Dev. 5, 502–511 (2020)

    Google Scholar 

  31. S. Paydar, I. Gholaminezad, H. Shirani-Faradonbeh et al., Evaluating the cathodic polarization of La0.7Sr0.3MnO3–Zr0.84−xCexY0.16O1.92 (x = 0, 0.42, 0.84) composites for SOFCs. J Mater Sci: Mater Electron 32, 11129–11144 (2021)

    CAS  Google Scholar 

  32. F. Monteverde, R.J. Grohsmeyer, A.D. Stanfield, G.E. Hilmas, W.G. Fahrenholtz, Densification behavior of ZrB2-MoSi2 ceramics: The formation and evolution of core-shell solid solution structures. J. Alloys Compd. 779, 950–961 (2019)

    Article  CAS  Google Scholar 

  33. Z. Zhao, M. Uddi, N. Tsvetkov, B. Yildiz, A.F. Ghoniem, Redox kinetics and nonstoichiometry of Ce0.5Zr0.5O2−δ for water splitting and hydrogen production. J. Phys. Chem. C 121, 11055–11068 (2017)

    Article  CAS  Google Scholar 

  34. H.R. Chalaki, A. Babaei, A. Ataie et al., LaFe0.6Co0.4O3 promoted LSCM/YSZ anode for direct utilization of methanol in solid oxide fuel cells. Ionics 26, 1011–1018 (2020)

    Article  CAS  Google Scholar 

  35. J.R. McBride, K.C. Hass, B.D. Poindexter, W.H. Weber, Raman and X-ray studies of Ce1-xRexO2-y, where Re = La, Pr, Nd, Eu, Gd, Tb. J. Appl. Phys. 76(4), 2435–2441 (1994)

    Article  CAS  Google Scholar 

  36. K. Vijayarangamuthu, S. Rath, Nanoparticle size, oxidation state, and sensing response of tin oxide nanopowders using Raman spectroscopy. J. Alloys Compd. 610, 706–712 (2014)

    Article  CAS  Google Scholar 

  37. F.H. ElBatal, S. Ibrahim, A.M. Abdelghany, Optical and FTIR spectra of NdF3-doped borophosphate glasses and effect of gamma irradiation. J. Mol. Struct. 1030, 107–112 (2012)

    Article  CAS  Google Scholar 

  38. Z. Yang, Y. Wei, Z. Fu, Z. Lu, K. Hermansson, Facilitated vacancy formation at Zr-doped ceria (1 1 1) surfaces. Surf. Sci. 602, 1199–1206 (2008)

    Article  CAS  Google Scholar 

  39. C. Zhang, X.D. Wen, B.T. Teng, Y. Zhao, M. Fan, Catalytic effects of Zr doping ion on ceria-based catalyst. Fuel Process. Technol. 131, 1–6 (2015)

    Article  CAS  Google Scholar 

  40. D.N. Durgasri, T. Vinodkumar, P. Sudarsanam, B.M. Reddy, Nanosized CeO2–Gd2O3 mixed oxides: study of structural characterization and catalytic CO oxidation activity. Catal. Lett. 144, 971–979 (2014)

    Article  CAS  Google Scholar 

  41. X. Zhao, X. Yang, D. Tian et al., Tailoring an interstitial oxygen conducting electrode by in situ fabrication for quasi-symmetrical solid oxide fuel cells. Ionics 27, 259–268 (2021)

    Article  CAS  Google Scholar 

  42. E. Bêche, P. Charvin, D. Perarnau, S. Abanades, G. Flamant, Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz). Surf. Interface Anal. 40, 264–267 (2008)

    Article  CAS  Google Scholar 

  43. A. Pfau, K.D. Schierbaum, The electronic structure of stoichiometric and reduced CeO2 surfaces: an XPS, UPS and HREELS study. Surf. Sci. 321, 71–80 (1994)

    Article  CAS  Google Scholar 

  44. R. Pandey, S. Singh, P. Singh, Modified polyol-mediated synthesis of Sr- and W-substituted La2Mo2O9 solid electrolyte for solid oxide fuel cells. J. Mater. Sci.: Mater. Electron. 31, 11325–11335 (2020)

    CAS  Google Scholar 

  45. A. Paulenova, S.E. Creager, J.D. Navratil, Y. Wei, Redox potentials and kinetics of the Ce3+/Ce4+ redox reaction and solubility of cerium sulfates in sulfuric acid solutions. J. Power Sour. 109, 431–438 (2002)

    Article  CAS  Google Scholar 

  46. K. Sandhya, N.S. Chitra-Priya, D.N. Rajendran, Enhancement of electrical properties Ce0.8Sm0.2−xO2−δ by Sr2+ doping. Appl. Phys. A 126, 613 (2020)

    Article  CAS  Google Scholar 

  47. V. Batra, C.V. Ramana, S. Kotru, Annealing-induced changes in chemical bonding and surface characteristics of chemical solution deposited Pb0.95La0.05Zr0.54Ti0.46O3 thin films. Appl. Surf. Sci. 379, 191–198 (2016)

    Article  CAS  Google Scholar 

  48. P. Jena, S. Jayasubramaniyan, P.K. Patro et al., Structural characterization, electrical conductivity and open circuit voltage studies of the nanocrystalline La10Si6O27 electrolyte material for SOFCs. Appl. Phys. A 124, 125 (2018)

    Article  CAS  Google Scholar 

  49. G. Postole, B. Chowdhury, B. Karmakar, K. Pinki, J. Banerji, A. Auroux, Knoevenagel condensation reaction over acid–base bifunctional nanocrystalline CexZr1xO2 solid solutions. J. Catal. 269, 110–121 (2010)

    Article  CAS  Google Scholar 

  50. R. Ran, H. Zhang, Wu. Xiaodong, J. Fan, D. Weng, Structure and oxygen storage capacity of Pd/Pr/CeO2-ZrO2 catalyst: effects of impregnated praseodymia. J. Rare Earths 32, 108–116 (2014)

    Article  CAS  Google Scholar 

  51. H. Li, X. Su, X. Tang, Q. Zhang, C. Uher, G.J. Snyder, U. Aydemir, Grain boundary engineering with nano-scale InSb producing high performance InxCeyCo4Sb12þz skutterudite thermoelectrics. J. Materiom. 3, 273–279 (2017)

    Article  Google Scholar 

  52. R. Coehoorn, W.F. Pasveer, P.A. Bobbert, M.A.J. Michels, Charge-carrier concentration dependence of the hopping mobility in organic materials with Gaussian disorder. Phys. Rev. B 72, 155206 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ananth Steephen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

We assure that this work was fully carried out by ourselves and the work described has not been published previously. It is not under consideration for publication elsewhere and its publication is approved by all authors. If accepted, it will not be published elsewhere in the same form, in English or in any other language, without the written consent of the Publisher.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhavan, B., Balakrishnan, N., Pillai, B. et al. Enhanced electrical conductivity of ceria electrolyte doped with samarium (Ce 0.8− x Zr x Sm 0.2 O 2−δ ) for solid oxide fuel cells . J Mater Sci: Mater Electron 32, 23066–23080 (2021). https://doi.org/10.1007/s10854-021-06789-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06789-3

Navigation