Skip to main content
Log in

Review on local structural properties of ceria-based electrolytes for IT-SOFC

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In general, many attempts have been focused on enhancement of oxy-ion conductivity at intermediate temperature range in order to have a feasible operating temperature of solid oxide fuel cell (SOFC). Every effort is directed towards the creation of defect-rich structure so as to get either ion or vacancy movement, which, in turn, offers more ionic conductivity. Doping is one of the strategies where isovalent, aliovalent, codopant, and multidopant are the sources to create defects. Doped ceria electrolytes have shown potential to reduce the operating temperature of SOFCs at an intermediate temperature (350–550 °C) range due to high ionic conductivity at comparatively low temperature. In the present work, a local structure of nano-sized aliovalent Ce0.85(M)0.15O2–8 and codoped ceria systems Ce0.85(Sm)0.075(M)0.075O2 − δ (where M = Sm, Sr, Gd, Nd, Ca, and Dy) prepared by a hydrothermal synthesis route followed by characterization with extended X-ray absorption fine structure (EXAFS) and X-ray absorption near-edge structure (XANES) is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Steele BCH, Heinzel A (2001) Nature 414:345–352

    Article  CAS  Google Scholar 

  2. Hibino T, Hashimoto A, Inoue T, Tokuno J, Yoshida S, Sano M (2000) J of Science 288:2031–2032

    Article  CAS  Google Scholar 

  3. Park S, Vohs JM, Gorle RJ (2000) J of letters to nature 404:265–267

    Article  CAS  Google Scholar 

  4. Inaba H, Tagawa H (1996) Solid State Ionics 83:1–16

    Article  CAS  Google Scholar 

  5. Kaspar J, Fornasiero P, Graziani M (1999) of Catalysis Today 50:285–295

    Article  CAS  Google Scholar 

  6. Balazs GB, Glass RS (1995) Solid State Ionics 76:155–162

    Article  Google Scholar 

  7. Anderson RG, Nowick AS (1981) Solid State Ionics 5:547–550

    Article  Google Scholar 

  8. Baral AK, Sankaranarayanan V (2010) J of The Elecrtochemical Society 157:53–58

    Article  Google Scholar 

  9. Ou DR, Mori T, Ye F, Zou J, Auchterlonie G, Drennan J (2008) J of Physical review B 77:024108

    Article  Google Scholar 

  10. Schneider D, Godickemeier M, Gaukler LJ (1997) J of Electroceramics 1(2):165–172

    Article  CAS  Google Scholar 

  11. Minervini L, Zocate MO, Grimes RW (1999) Solid State Ionics 116:339–349

    Article  CAS  Google Scholar 

  12. Eguchi K, Seoguchi T, INOUE T, Arai H (1992) Solid State Ionics 52:165–172

    Article  CAS  Google Scholar 

  13. Kim DJ (1989) J of Am Ceram Soc 72:1415–1421

    Article  CAS  Google Scholar 

  14. Manzoli M, Avgouropouos G, Tabakova T, Papavasiliou J, Loannides T, Bocc F (2008) J of Catalysis Today 138:239–243

    Article  CAS  Google Scholar 

  15. Mori T, Kobayashi T, Wang Y (2005) J Am Ceram Soci 88:1981–1984

    Article  CAS  Google Scholar 

  16. Ou DR, Mori T, Ye F, Kobayashi T, Zou J (2006) J of Appl Phys Letts 89:171911

    Article  Google Scholar 

  17. Faber J, Geoffroy C, Roux A, Sylvestre A, Abelard P (1989) J of Appl Phys A 49:225–232

    Article  Google Scholar 

  18. Maclachlan MJ, Ginzburg M, Coombs N, Coyle TW, Raju NP, Greedan JE, Ozin GA, Manners L (2012) J of Science 287:1460–1462

    Article  Google Scholar 

  19. Wang DY, Park DS, Griffith J, Nowick Solid AS (1981) State Ionics 2:95–105

    Article  CAS  Google Scholar 

  20. Butler V, Catlow CRA, Fender BEF, Harding JH (1983) Solid State Ionics 8:109–113

    Article  CAS  Google Scholar 

  21. Kilner JA, Brook RJ (1982) Solid State Ionics 6:237–252

    Article  CAS  Google Scholar 

  22. Kosinki MR, Baker RT (2011) J of Power Sources 196:2498–2512

    Article  Google Scholar 

  23. Steele BCH (2000) Solid State Ionics 129:95–110

    Article  CAS  Google Scholar 

  24. Omar S, Wachsman ED, Nino JC (2006) Solid State Ionics 177:3199–3203

    Article  CAS  Google Scholar 

  25. Yahiro H, Eguchi Y, Eguchi K, Arai H (1988) J Appl Electrochem:527–531

  26. Chen TP, Wright JD, Krist K, Singhal SC, Tagawa H, Lehnert W (1997) The Electrochemical Society 69:97–40

    Article  Google Scholar 

  27. Acharya SA, Gaikwad VM, D’Souza SW, Barman SR (2014) Solid State Ionics 260:21–29

    Article  CAS  Google Scholar 

  28. Omar S, Wachsman ED, Nino JC (2008) Solid State Ionics 178:1890–1897

    Article  CAS  Google Scholar 

  29. Jaiswal N, Upadhyay S, Kumar D, Prakash O (2014) Inter J of Hydrogen Energy 39:543–551

    Article  CAS  Google Scholar 

  30. Wang FY, Chen S, Cheng S (2004) J Electrochemistry Communication 6:743–746

    Article  CAS  Google Scholar 

  31. Shirbhate SC, Yadav AK, Acharya SA (2016) J Aplied Phy Lett 108:143501

    Article  Google Scholar 

  32. Acharya SA, Gaikwad VM, Sathe V, Kulkarni SK (2014) Jof Applied Physics Letters 104:113508

    Article  Google Scholar 

  33. Chen W, Navrotsky AJ (2006) J of Materials Research 21:3242

    Article  CAS  Google Scholar 

  34. Zhang TS, Ma J, Cheng H, Chan SH (2006) Mater Res Bull 41:563

    Article  CAS  Google Scholar 

  35. http://www.rrcat.gov.in/technology/accel/srul/beamlines/index.html

  36. Basu S, Nayak C, Yadav AK, Agrawal A, Poswal AK, Bhattacharyya D, Jha SN, Sahoo NK (2014) J Phys Conf Ser 493(1–4):012032

    Article  Google Scholar 

  37. Newville M, Ravel B, Haskel D, Rehr JJ, Stern EA, Yacoby Y (1995) Physica B 154:208

    Google Scholar 

  38. Newville M (2001) J Synchrotron Rad 8:322–324

    Article  CAS  Google Scholar 

  39. D.C. Konigsberger and R. Prince (Editors) (1988). X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES. Wiley, New York

  40. Chemseddine A, Erdmann MF, Krappe EH, Boulmaaz S (1997) J of Z Physics D 40:566–569

    Article  CAS  Google Scholar 

  41. Vlasenko VG, Shuvaev AT (2003) Russian J of Coordination Chemistry 29:227–230

    Article  CAS  Google Scholar 

  42. Basu S, Varma S, Shirsat AV, Wani BN, Bhardwaj SR, Chakrabarti A, Jha SN, Bhattacharya D (2012) J of Applied Physics 111:053532

    Article  Google Scholar 

  43. Deguchi H, Yoshida H, Inagaki T, Horiuchi M (2005) J of Solid State Ionics 176:1817–1825

    Article  CAS  Google Scholar 

  44. Coduri M, Scavini M, Allieta M, Brurelli M, Ferrero C (2012) J of Phys:Conference Series 340:012056

    Google Scholar 

  45. Faber J, Geoffroy C, Roux A, Sylvestre A, Abelard P (1989) Appl Phys A Mater Sci Process 49:225

    Article  Google Scholar 

  46. Li ZP, Mori T, Zou J, Drennan J (2013) J of Material Research Bulletin 48:807–812

    Article  CAS  Google Scholar 

  47. Fallah JE, Bouiana S, Dexpert H, Kiennenann A, Majerus J, Touret O, Villain F, Normand FL (1994) J of Phys Chem 98:5522–5533

    Article  Google Scholar 

  48. Soldatov AV, Ivancheko TS, Longa SD, Kotani A, Iwamoto Y, Bianoconi A (1994) J of Physical Review B 50:8

    Article  Google Scholar 

  49. Zhang F, Wang P, Koberstein J, Khalid S, Chan SW (2004) J of Surface Science 563:74–82

    Article  CAS  Google Scholar 

  50. Beck DD, Capehart TW, Hoffman RW (1989) J of Phys Lett 159:207

    CAS  Google Scholar 

  51. Nachimuthu P, Shih WC, Liu RS, Jang LY, Chen JM (2000) J of Solid State Chem 149:408–413

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the author, SCS, wants to acknowledge the DST, New Delhi, for providing the financial assistance through Women Scientist (WOS-A): DST SR/WOS-A/PS-19/2014 (G). SAA acknowledges the NRB-DRDO for the financial funding through the project NRB-356/MAT/14-15 and UGC-CSR-DAE, Indore, for the partial funding for collaborative research at the RRCAT, Indore, CSR-IC-BL-43/CRS-140-2014-15. We want to give our special thanks to Dr. S.N. Jha, Scientist, A&MPD, BARC, for the core guidance in the data interpretation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirbhate, S.C., Singh, K., Acharya, S.A. et al. Review on local structural properties of ceria-based electrolytes for IT-SOFC. Ionics 23, 1049–1057 (2017). https://doi.org/10.1007/s11581-016-1893-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1893-9

Keywords

Navigation