Skip to main content
Log in

Role of elastic and optical properties on silver nanoferrite and nanochromite for optical switch device applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Silver nanoferrite and nanochromite (Ag2Fe2O4, Ag2Cr2O4) were successfully prepared by the Flash method. The morphology was illustrated using Atomic force microscopy (AFM) to confirm that the particle size of the investigated samples in the nanoscale range. Also, the Fourier Transform Infrared (FTIR) analysis was studied to assure the formation of the investigated samples. Moreover, the elastic properties estimated from FTIR were studied in the present work to study the behavior of the samples. The Elastic properties were investigated from FTIR measurement and showed that the interatomic bonding of the atoms of Ag2Cr2O4 nanoparticles has more strength than that of Ag2Fe2O4 nanoparticles. The optical properties were studied using some models to help in tailoring and modeling the properties of the investigated samples to be used in optoelectronic devices. Moreover, the nonlinear optical susceptibility was calculated and showed that Ag2Cr2O4 nanoparticles are more suitable to be applied as an optical switch device. As a result of all previous analyses, the applications of this study promote the use of Ag2Fe2O4 nanoferrite and Ag2Cr2O4 nanochromite in many technological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.A. Sayed, H.K. Abdelsalam, A.A.H. El-Bassuony, Antimicrobial activity of Novel spinel nanoferrites against pathogenic fungi and bacteria. World J. Microbiol. Biotechnol. 36, 25 (2020). https://doi.org/10.1007/s11274-020-2803-x

    Article  CAS  Google Scholar 

  2. A.A.H. El-Bassuony, H.K. Abdelsalam, Attractive improvement in structural, magnetic, optical, and antimicrobial activity of silver delafossite by Fe/Cr doping. J. Supercond. Novel Magn. 31, 3691–3703 (2018). https://doi.org/10.1007/s10948-018-4627-6

    Article  CAS  Google Scholar 

  3. T.K. Rao, C.H.J. Rao, I.V.K. Viswanath, Y.L.N. Murthy, Anti microbial activity of nano silver ferrite composite. IJIRSET (2015). https://doi.org/10.15680/IJIRSET.2015.0409092

    Article  Google Scholar 

  4. A.A.H. El-Bassuony, H.K. Abdelsalam, Fascinating study of the physical properties of a novel nanometric delafossite for biomedical applications. JOM 71, 1866–1873 (2019). https://doi.org/10.1007/s11837-019-03415-w

    Article  CAS  Google Scholar 

  5. R.J.B. Pinto, P.A.A.P. Marques, C.P. Neto, T. Trindade, S. Daina, P. Sadocco, Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers. Acta Biomater. 5, 2279–2289 (2009)

    Article  CAS  Google Scholar 

  6. A.A.H. El-Bassuony, H.K. Abdelsalam, Giant exchange bias of hysteresis loops on Cr3+-doped Ag nanoparticles. J Supercond Nov. Magn. 31, 1539–1544 (2018). https://doi.org/10.1007/s10948-017-4340-x

    Article  CAS  Google Scholar 

  7. M.A. Sayed, A.A.H. El-Bassuony, H.K. Abdelsalam, Evaluation of antimicrobial properties of a Novel synthesized nanometric Delafossite. Braz. J. Microbiol. (2020). https://doi.org/10.1007/s42770-020-00366-2

    Article  Google Scholar 

  8. A.A.H. El-Bassuony, Effect of Al addition on structural, magnetic, and antimicrobial properties of Ag nanoparticles for biomedical applications. JOM. 72, 1154–1162 (2020). https://doi.org/10.1007/s11837-019-03784-2

    Article  CAS  Google Scholar 

  9. X.Q. Fang, G.X. Bai, Preparation and service performance characterization of Ni/PMN-PT: Effect of preparation temperature. J. Alloy. Compd. 735(25), 1131–1136 (2018)

    Article  CAS  Google Scholar 

  10. A.A.H. El-Bassuony, H.K. Abdelsalam, Synthesis, characterization and antimicrobial activity of AgFeO2 delafossite. J. Mater. Sci.: Mater. Electron. 29, 11699–11711 (2018). https://doi.org/10.1007/s10854-018-9268-9

    Article  CAS  Google Scholar 

  11. A.A.H. El-Bassuony, H.K. Abdelsalam, Tailoring the structural, magnetic and antimicrobial activity of AgCrO2 delafossite at high annealing temperature. J. Therm. Anal. Calorim. 138, 81–88 (2019). https://doi.org/10.1007/s10973-019-08207-7

    Article  CAS  Google Scholar 

  12. A.A.H. El-Bassuony, H.K. Abdelsalam, Modification of AgFeO2 by double nanometric delafossite to be suitable as energy storage in solar cell. J. Alloy. Compd. 726, 1106–1118 (2017). https://doi.org/10.1016/j.jallcom.2017.08.087

    Article  CAS  Google Scholar 

  13. A.A.H. El-Bassuony, H.K. Abdelsalam, Enhancement of AgCrO2 by double nanometric delafossite to be applied in many technological applications. J. Mater. Sci.: Mater. Electron. 29, 5401–5412 (2018). https://doi.org/10.1007/s10854-017-8506-x

    Article  CAS  Google Scholar 

  14. S.L. Kakani, C.A. Hemrajani, Text Book of Solid State Physics, 3rd edn. (Sultan Chand & Sons, New Delhi, India, 1997)

    Google Scholar 

  15. K.B. Modi, U.N. Trivedi, M.P. Pandya, S.S. Bhatu, M.C. Chhantbar, H.H. Joshi, Microwaves and Optoelectronics (Anamaya Publishers, New Delhi, India, 2004)

    Google Scholar 

  16. N.H. El Fewaty, A.M. El Sayed, R.S. Hafez, Synthesis, structural and optical properties of tin oxide nanoparticles and its CMC/PEG–PVA nanocomposite films. Polym. Sci. 58, 1004–1016 (2016)

    Google Scholar 

  17. M.M. El-Nahass, H.A.M. Ali, A.-S. Gadallah, M.A. Khedr, H.A. Afify, Analysis of structural and optical properties of annealed fullerene thin films. Eur. Phys. J. D. 69, 200 (2015)

    Article  Google Scholar 

  18. A.A.H. El-Bassuony, Enhancement of structural and electrical properties of novelty nanoferrite materials. J. Mater. Sci.: Mater. Electron. 28, 14489–14498 (2017). https://doi.org/10.1007/s10854-017-7312-9

    Article  CAS  Google Scholar 

  19. A.A.H. El-Bassuony, Tuning the structural and magnetic properties on Cu/Cr nanoferrite using different rare-earth ions. J. Mater. Sci.: Mater. Electron. 29, 3259–3269 (2017). https://doi.org/10.1007/s10854-017-8261-z

    Article  CAS  Google Scholar 

  20. H.K. Abdelsalam, Enhancing the structural and spectroscopic properties of Cr3+ ion-doped Ni/Cd/Zn nanoferrite to be applied to industrial applications. J. Supercond. Novel Magn. 31, 4063–4077 (2018). https://doi.org/10.1007/s10948-018-4689-5

    Article  CAS  Google Scholar 

  21. A.A.H. El-Bassuony, A comparative study of physical properties of Er and Yb nanophase ferrite for industrial application. J. Supercond. Novel Magn. 31, 2829–2840 (2018). https://doi.org/10.1007/s10948-017-4543-1

    Article  CAS  Google Scholar 

  22. S.M. Patange, S.E. Shirsath, B.G. Toksha, S.S. Jadhav, S.J. Shukla, K.M. Jadhav, Cation distribution by Rietveld, spectral and magnetic studies of chromium-substituted nickel ferrites. Appl. Phys. A 95(2), 429–434 (2009)

    Article  CAS  Google Scholar 

  23. M.H. Maklad, N.M. Shash, H.K. Abdelsalam, Structural and magnetic properties of nanograined Ni 0.7–y Zn0.3 CayFe2O4 spinels. Eur. Phys. J. Appl. Phys. 66, 30402 (2014). https://doi.org/10.1051/epjap/2014130573

    Article  CAS  Google Scholar 

  24. A.A.H. El-Bassuony, H.K. Abdelsalam, Impacts of hematite, bunsenite and maghemite impurities on the physical and antimicrobial properties of silver nanoparticles. Eur. Phys. J. Plus 135, 64 (2020). https://doi.org/10.1140/epjp/s13360-020-00139-8

    Article  CAS  Google Scholar 

  25. A.A.H. El-Bassuony, Influence of high annealing temperature on structural, magnetic and antimicrobial activity of silver chromite nanoparticles for biomedical applications. J. Inorg. Organomet. Polym 30, 1821–1828 (2020). https://doi.org/10.1007/s10904-019-01306-w

    Article  CAS  Google Scholar 

  26. M.H. Maklad, N.M. Shash, H.K. Abdelsalam, Synthesis, characterization and magnetic properties of nanocrystalline Ni1−xZnxFe2O4 spinels via coprecipitation precursor. Int. J. Mod. Phys. B 28, 1450165 (2014). https://doi.org/10.1142/S0217979214501653

    Article  CAS  Google Scholar 

  27. A.A.H. El-Bassuony, H.K. Abdelsalam, Correlation of heat treatment and the impurities accompanying Ag nanoparticles. European Physical Journal Plus. 135, 66 (2020). https://doi.org/10.1140/epjp/s13360-019-00025-y

    Article  CAS  Google Scholar 

  28. A.A.H. El-Bassuony, H.K. Abdelsalam, Synthesis, characterization, magnetic and antimicrobial properties of silver chromite nanoparticles. J. Mater. Sci.: Mater. Electron. 31, 3662–3673 (2020). https://doi.org/10.1007/s10854-020-02924-8

    Article  CAS  Google Scholar 

  29. A.Y. Lipare, P.N. Vasambekar, A.S. Vaingankar, X-ray, IR and dc electrical resistivity study of CaCI2-doped zinc copper ferrite system. Phys. Status Solidi A 196, 372–378 (2003)

    Article  CAS  Google Scholar 

  30. S.A. Mazen, S.F. Mansour, E. Dhahri, H.M. Zaki, T.A. Elmosalami, The infrared absorption and dielectric properties of Li-Ga ferrite. J. Alloy. Compd. 470, 294–300 (2009)

    Article  CAS  Google Scholar 

  31. B.J. Evans, S. Hafner, M¨ossbauer resonance of Fe57 in oxidic spinels containing Cu and Fe. J. Phys. Chem. Solids 29(9), 1573–1588 (1968)

    Article  CAS  Google Scholar 

  32. R.D. Waldron, Infrared spectra of ferrites. Phys. Rev. 99, 1727–1735 (1955)

    Article  CAS  Google Scholar 

  33. S.C. Watawe, B.D. Sutar, B.D. Sarwade, B.K. Chougule, Infrared studies of some mixed Li-Co ferrites. Int. J. Inorg. Mater. 3, 819–823 (2001)

    Article  CAS  Google Scholar 

  34. S.A. Mazen, A.M. Abdel-Daiem, IR spectra and dielectric properties of Cu–Ge ferrite”. Mater. Chem. Phys. 130, 847–852 (2011)

    Article  CAS  Google Scholar 

  35. O.L. Anderson, Physical Acoustics, vol. III (Academic Press, New York, NY, USA, Part B, 1965)

    Google Scholar 

  36. K.B. Modi, U.N. Trivedi, M.P. Pandya, S.S. Bhatu, M.C. Chhantbar, H.H. Joshi, Study of Elastic Properties of Magnesium and Aluminum Co-Substituted Lithium Ferrite near Microwave Frequencies, in Microwaves and Optoelectronics (Anamaya Publishers, New Delhi, India, 2004), p. 223

    Google Scholar 

  37. D. Ravinder, L. Balachander, Y.C. Venudhar, Elastic behaviour of manganese substituted lithium ferrites. Mater. Lett. 49, 205–208 (2001)

    Article  CAS  Google Scholar 

  38. V.G. Patil, S.E. Shirsath, S.D. More et al., Effect of zinc substitution on structural and elastic properties of cobalt ferrite. J. Alloy. Compd. 488, 199–203 (2009)

    Article  CAS  Google Scholar 

  39. B. Raj, V. Rajendram, P. Palanichamy, Science and Technology of Ultrasonics (Narosa Publishing House, New Delhi, India, 2004)

    Google Scholar 

  40. K.B. Modi, M.K. Rangolia, M.C. Chhantbar, H.H. Joshi, Study of infrared spectroscopy and elastic properties of fine and coarse grained nickel-cadmium ferrites. J. Mater. Sci. 41, 7308–7318 (2006)

    Article  CAS  Google Scholar 

  41. N.M. Saadatabadi, M.R. Nateghi, M.B. Zarandi, Determination of the dispersive optical constants of the poly(vinyl chloride) transparent nanocomposite layers containing nanosilver intercalated graphene. Polym. Sci., Ser. A 57, 480 (2015)

    Article  Google Scholar 

  42. M.M. El-Nahass, H.A.M. Ali, F.S.H. AbuSamaha, Phys. B 415, 57 (2013)

    Article  CAS  Google Scholar 

  43. R.P. Chahal, S. Mahendia, A.K. Tomar, S. Kumar, J. Alloys Compd. 538, 212 (2012)

    Article  CAS  Google Scholar 

  44. A.A. Ziabari, F.E. Ghodsi, J. Alloys Compd. 509, 8748 (2011)

    Article  CAS  Google Scholar 

  45. A.M. Hassanien, A.A. Atta, M.M. El-Nahass, S.I. Ahmed, A.A. Shaltout, A.M. Al-Baradi, A. Alodhayb, A.M. Kamal, Opt Quant Electron 52, 194 (2020)

    Article  CAS  Google Scholar 

  46. M. Frumar, J. Jedelský, B. Frumarová, T. Wágner, M. Hrdlička, Optically and thermally induced changes of structure, linear and non-linear optical properties of chalcogenides thin films. J. Non-Cryst. Solids 399–404, 326–327 (2003)

    Google Scholar 

  47. L. Jensen, PTh. van Duijnen, Int. J. Quantum Chem. 102, 612 (2005)

    Article  CAS  Google Scholar 

  48. M.M. El-Nahass, H.A.M. Ali, A.-S. Gadallah, M. Atta Khedr, H.A. Afify, Eur. Phys. J. D 69, 200 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asmaa.A. H. El-Bassuony.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamal, W.M., El-Bassuony, A.H., Abdelsalam, H.K. et al. Role of elastic and optical properties on silver nanoferrite and nanochromite for optical switch device applications. J Mater Sci: Mater Electron 32, 21590–21602 (2021). https://doi.org/10.1007/s10854-021-06667-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06667-y

Navigation