Skip to main content
Log in

Electrostatic coupling-driven dielectric enhancement of PZT/BTO multilayer thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, PbZr0.52Ti0.48O3/BaTiO3 (PZT/BTO) multilayers with varying layer fractions were deposited on Pt/Ti/SiO2/Si substrates by sol–gel process. The films were characterized by X-ray diffraction and scanning electron microscopy (SEM). The result shows that there exists a dielectric enhancement when the BTO layer fraction x is around 0.5, and at this fraction, the dielectric constant of PZT/BTO is 590 at 100 kHz, which is far more than that of monolithic PZT or BTO films (478 and 284, respectively). The thermodynamic analysis shows that the measured dielectric constant is close to the simulation values when x closes to 0.5; otherwise it fit the values caculated by series connection. The result indicates that the internal field resulting from the polarization mismatch between two ferroelectric layers contributes to the enhancement of PZT/BTO heterogeneous thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.R. Ramesh, S. Aggarwal, O. Auciello. Mater. Sci. Eng. R. Rep. 32, 191 (2001)

    Article  Google Scholar 

  2. N.M. Shorrocks, A. Patel, M.J. Walker et al., Microelectron. Eng. 29, 59 (1995)

    Article  CAS  Google Scholar 

  3. A.K. Tagantsev, V.O. Sherman, K.F. Astafiev et al., J. Electroceram. 11, 5 (2003)

    Article  CAS  Google Scholar 

  4. A. Kumar, M. Kumar, V. Bhatt et al., Chem. Phys. Lett. 763, 138162 (2020)

    Article  Google Scholar 

  5. A. Erbil, Y. Kim, R.A. Gerhardt, Phys. Rev. Lett. 77, 1628 (1996)

    Article  CAS  Google Scholar 

  6. I. Kanno, Jpn. J. Appl. Phys. 57, 040101 (2018)

    Article  Google Scholar 

  7. A. Kumar, S. Mukherjee, S. Sahare et al., Mater. Sci. Semicond. Proc. 122, 105471 (2021)

    Article  CAS  Google Scholar 

  8. A. Kumar, D. Pednekar, S. Mukherjee et al., J. Mater Sci-Mater El 27, 17055 (2020)

    Article  Google Scholar 

  9. D. Schwenk, F. Fishman, F. Schwabl, J. Phys.: Condens. Matter 2, 5409 (1990)

    Google Scholar 

  10. J. Shen, Y.Q. Ma, Phys. Rev. B 61, 14279 (2000)

    Article  CAS  Google Scholar 

  11. Q.L. Chen, Ann, Rev. Mater. Res. 32, 113 (2002)

    Article  CAS  Google Scholar 

  12. H.X. Cao, Z.Y. Li, Phys. Lett. A. 335, 444 (2005)

    Article  CAS  Google Scholar 

  13. Y. Li, W. Zhang, X. Wang et al., J. Porous. Mat. 15, 133 (2008)

    Article  CAS  Google Scholar 

  14. R.G. Li, S.W. Jiang, L.B. Gao et al., Mater. Sci. Eng. B 178, 911 (2013)

    Article  CAS  Google Scholar 

  15. J. Zhou, R.R. Li, Ru Li et al., Appl. Surf. Sci. 259, 29 (2012)

    Article  CAS  Google Scholar 

  16. H. Khassaf, N. Khakpash, S. Vijayan et al., Acta. Mater. 105, 68 (2016)

    Article  CAS  Google Scholar 

  17. M.T. Kesim, J. Zhang, S.P. Alpay et al., Appl. Phys. Lett. 105, 52901 (2014)

    Article  Google Scholar 

  18. M.B. Okatan, J.V. Mantese, S.P. Alpay, Phys. Rev. B 79, 11 (2009)

    Article  Google Scholar 

  19. J. Zhang, M.W. Cole, S.P. Alpay, J. Appl. Phys. 108, 054103 (2010)

    Article  Google Scholar 

  20. A.L. Roytburd, S. Zhong, S.P. Alpay, Appl. Phys. Lett. 87, 092902 (2005)

    Article  Google Scholar 

  21. S.P. Alpay, J. Mantese, S. Trolier-Mckinstry et al., MRS Bull. 39, 1099 (2014)

    Article  CAS  Google Scholar 

  22. H. Liu, X. Gong, J.E. Liang et al., Appl. Phys. Lett. 91, 122906 (2007)

    Article  Google Scholar 

  23. J. Zhu, Y.R. Li, Y. Zhang et al., Ceram. Int. 34, 967 (2008)

    Article  CAS  Google Scholar 

  24. N.D. Huang, Z.R. Liu, Z.Q. W et al., Phys. Rev. Lett. 91, 602 (2003)

    Google Scholar 

  25. D. Oneill, R.M. Bowman, J.M. Gregg, Appl. Phys. Lett. 77, 1520 (2000)

    Article  CAS  Google Scholar 

  26. G. Catalan, D. Oneill, R.M. Bowman et al., Appl. Phys. Lett. 77, 3078 (2000)

    Article  CAS  Google Scholar 

  27. A. Sharma, Z.G. Ban, S.P. Alpay et al., Appl. Phys. Lett. 85, 985 (2004)

    Article  CAS  Google Scholar 

  28. N.A. Pertsev, A.G. Zembilgotov, A.K. Tagantsev, Phys. Rev. Lett. 80, 1988 (1998)

    Article  CAS  Google Scholar 

  29. M.J. Huang, E. Furman, H.A. MiKinstry et al., Ferroelectrics 94, 313 (1989)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (U1601208 and 51577070), the Key-Area Research and Development Program of Guangdong Province (2019B010937001, 2019B040403004, 2019B040403006), Natural Science Foundation of Guangdong Province (2019A1515012129), and Science and Technology Planning Project of Guangzhou City (202002030420).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, H., Wang, X., Li, X. et al. Electrostatic coupling-driven dielectric enhancement of PZT/BTO multilayer thin films. J Mater Sci: Mater Electron 32, 18087–18094 (2021). https://doi.org/10.1007/s10854-021-06351-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06351-1

Navigation