Skip to main content
Log in

Preliminary study on the performance of a redox capacitor with the use of ionic liquid-based gel polymer electrolyte and polypyrrole electrodes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Redox capacitor, which is one type of supercapacitor, has been attracted tremendously as it shows a satisfactory specific capacitance, good cycle ability, and good stability. The present study reveals a redox capacitor fabricated with an ionic liquid (IL)-based gel polymer electrolyte (GPE). Electrodes of the redox capacitor were fabricated with the conducting polymer, polypyrrole (PPy). The composition of the GPE was polyvinylidenefluoride–co-hexafluoropropylene (PVdF–co-HFP): 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (1E3MITF): ZnTF. Characterization of redox capacitor was done by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) tests. The relaxation time constant (τ0) of the redox capacitor is about 31.57 s implying somewhat fast redox reactions. Initial single electrode specific capacitance (CSC) was 150.2 Fg−1, and at the 500th cycle, it was 40.03 Fg−1. The decrease of the CSC may be due to the formation of the passivation layer at the GPE/electrode interface, resulting in degradation upon cycling. The GCD test resulted 48.4 Fg−1 of initial single-electrode specific discharge capacitance (Csd) value. Upon 1000 cycles, it was reached 22.3 Fg−1. The decrease of Csd may be due to the degradation of the electrode and the IL-based GPE upon prolonged cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E. Frackowiak, Q. Abbas, Carbon/carbon supercapacitors. J. Energy Chem. 22, 226–240 (2013)

    Article  CAS  Google Scholar 

  2. X. Peng, Q. Shuhai, X. Changjum, A New Supercapacitor and Li-ion battery hybrid system for electric vehicle in advisor”. J. Phys. Conf. Ser. 806, 012015 (2017)

    Article  Google Scholar 

  3. G. Xiong, C. Meng, R. G. Reifenberger, P. P. Irazoqui, Special issue graphene a review of graphene-based electrochemical microsupercapacitors. Electroanalysis 26, 30–51 (2014)

    Article  CAS  Google Scholar 

  4. S. Das, A. Ghosh, Solid polymer electrolyte based on pvdf-hfp and ionic liquid embedded with TiO 2 nanoparticle for electric double layer capacitor (EDLC) application. J. Electrochem. Soc. 163(13), F1348–F1353 (2017)

    Article  Google Scholar 

  5. B. Evanko, S.W. Boettcher, S.J. Yoo, G.D. Stucky, Redox-enhanced electrochemical capacitors. ACS Energy Lett. 2, 2581–2590 (2017)

    Article  CAS  Google Scholar 

  6. S. Uppugalla, U. Male, P. Srinivasan, Electrochimica Acta Design and synthesis of heteroatoms doped carbon/polyaniline hybrid material for high performance electrode in supercapacitor application. Electrochim. Acta 146, 242–248 (2014)

    Article  CAS  Google Scholar 

  7. H.J. Xie, B. Gélinas, D. Rochefort, Redox-active electrolyte supercapacitors using electroactive ionic liquids Electrochemistry Communications Redox-active electrolyte supercapacitors using electroactive ionic liquids. Electrochem. commun. 66, 42–45 (2017)

    Article  Google Scholar 

  8. D. You, Z. Yin, Y. Ahn, S. Lee, J. Yoo, Y.S. Kim, Redox-active ionic liquid electrolyte with multi energy storage mechanism for high energy density. RSC Adv. 7, 55702–55708 (2017)

    Article  CAS  Google Scholar 

  9. G.P. Pandey, S.A. Hashmi, Ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate-based gel polymer electrolyte for electrochemical capacitors. J. Mater. Chem. A 1(10), 3372 (2013)

    Article  CAS  Google Scholar 

  10. C.W. Liew, Y.S. Ong, J.Y. Lim, C.S. Lim, K.H. Teoh, S. Ramesh, Effect Of Ionic Liquid On Semi – crystalline Poly ( vinylidene fluoride – co – hexafluoropropylene ) Solid Copolymer Electrolytes. Int. J. Electrochem. Sci. 8, 7779–7794 (2013)

    CAS  Google Scholar 

  11. J. Bai, H. Lu, Y. Cao, X. Li, J. Wang, A novel ionic liquid polymer electrolyte for quasi-solid state lithium air batteries. RSC Adv. 7(49), 30603–30609 (2017)

    Article  CAS  Google Scholar 

  12. C. Liew, K.H. Ari, J. Kawamura, Y. Iwai, S. Ramesh, A.K. Arof, Effect of halide anions in ionic liquid added poly ( vinyl alcohol ) -based ion conductors for electrical double layer capacitors. J. Non. Cryst. Solids 458, 97–106 (2017)

    Article  CAS  Google Scholar 

  13. A. Brandt, S. Pohlmann, A. Varzi, A. Balducci, S. Passerini, Ionic liquids in supercapacitors. MRS Bull. 38, 554–559 (2013)

    Article  CAS  Google Scholar 

  14. G.P. Pandey, Y. Kumar, S.A, Hashmi, Ionic liquid incorporated polymer electrolytes for supercapacitor application. Indian J. Chem. 49(5–6), 743–751 (2010)

    Google Scholar 

  15. M. Moreno et al., Ionic liquid electrolytes for safer lithium batteries I. investigation around optimal formulation. J. Electrochem. Soc. 164(1), A6026–A6031 (2017)

    Article  CAS  Google Scholar 

  16. M. Armand, F. Endres, D.R. MacFarlane, H. Ohno, B. Scrosati, Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8(8), 621–629 (2009)

    Article  CAS  Google Scholar 

  17. J. Chattoraj, D. Diddens, A. Heuer, Effects of ionic liquids on cation dynamics in amorphous polyethylene oxide electrolytes. J. Chem. Phys. 140(2), 2–8 (2014)

    Article  Google Scholar 

  18. S.P. Ong, O. Andreussi, Y. Wu, N. Marzari, G. Ceder, Electrochemical windows of room-temperature ionic liquids from molecular dynamics and density functional theory calculations. Chem. Mater. 23(11), 2979–2986 (2011)

    Article  CAS  Google Scholar 

  19. B.A. Mei, O. Munteshari, J. Lau, B. Dunn, L. Pilon, Physical Interpretations of Nyquist Plots for EDLC Electrodes and Devices. J. Phys. Chem. C 122(1), 194–206 (2018)

    Article  CAS  Google Scholar 

  20. H. Yu et al., A novel redox-mediated gel polymer electrolyte for high-performance supercapacitor. J. Power Sour. 198, 402–407 (2012)

    Article  CAS  Google Scholar 

  21. J.P. Tey, M.A. Careem, M.A. Yarmo, A.K. Arof, Durian shell-based activated carbon electrode for EDLCs. Ionics (Kiel) 22(7), 1209–1216 (2016)

    Article  CAS  Google Scholar 

  22. R. Ramya, R. Sivasubramanian, M.V. Sangaranarayanan, Conducting polymers-based electrochemical supercapacitors — Progress and prospects. Electrochim. Acta 101, 109–129 (2013)

    Article  CAS  Google Scholar 

  23. C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44(21), 7431–7920 (2015)

    Article  Google Scholar 

  24. N. Harankahawa, S. Weerasinghe, K. Vidanapathirana, K. Perera, Investigation of a Pseudo Capacitor with Polyacrylonitrile based Gel Polymer Electrolyte. J. Electrochem. Sci. Technol. 8(2), 107–114 (2017)

    Article  CAS  Google Scholar 

  25. P.A. Basnayaka et al., High Performance Asymmetric Supercapacitors Based on Dual Phosphorus ( P ) and Nitrogen ( N ) co-Doped Carbon and Graphene-Polyaniline Electrodes. J. Solid State Sci. Technol. 6(6), 3168–3172 (2017)

    Article  Google Scholar 

  26. G.P. Pandey, S.A. Hashmi, Y. Kumar, Performance studies of activated charcoal based electrical double layer capacitors with ionic liquid gel polymer electrolytes. Energy Fuels 24(12), 6644–6652 (2010)

    Article  CAS  Google Scholar 

  27. A. Rezqita, M. Sauer, A. Foelske, H. Kronberger, A. Trifonova, The effect of electrolyte additives on electrochemical performance of silicon/mesoporous carbon (Si/MC) for anode materials for lithium-ion batteries. Electrochim. Acta 247, 600–609 (2017)

    Article  CAS  Google Scholar 

  28. A. Gupta, S.K. Tripathi, Effect of anionic size of PMMA Based Polymer Gel Electrolytes for Redox Capacitor. Int. J. Eng. Res. Appl. 3(1), 3–5 (2013)

    Google Scholar 

  29. M. Mastragostino, C. Arbizzani, F. Soavi, Polymer-based supercapacitors. J. Pow. Sour. 97–98, 812–815 (2001)

    Article  Google Scholar 

  30. A. Jain, S.K. Tripathi, Experimental studies on high-performance supercapacitor based on nanogel polymer electrolyte with treated activated charcoal. Ionics (Kiel) 19, 549–557 (2013)

    Article  CAS  Google Scholar 

  31. K. Wang, H. Wu, Y. Meng, Y. Zhang, Z. Wei, Integrated energy storage and electrochromic function in one flexible device: an energy storage smart window. Electron. Suppl. Mater. Energy Environ. Sci. 5(8), 8384 (2012). https://doi.org/10.1039/c2ee21643d

    Article  CAS  Google Scholar 

  32. K.S. Ryu, K.M. Kim, N. Park, Y.J. Park, S.H. Chang, Symmetric redox supercapacitor with conducting polyaniline electrodes. J. Pow. Sour. 103(2), 305–309 (2002)

    Article  CAS  Google Scholar 

  33. S. Palaniappan, S.B. Sydulu, T.L. Prasanna, P. Srinivas, High-temperature oxidation of aniline to highly ordered polyaniline – sulfate salt with a nanofiber morphology and its use as electrode materials in symmetric supercapacitors. J. Appl. Polym. Sci. 120, 780–788 (2011)

    Article  CAS  Google Scholar 

  34. F. Ataherian, N. Wu, Long-term charge/discharge cycling stability of MnO 2 aqueous supercapacitor under positive polarization. J. Electrochem. Soc. 158(4), A422–A427 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors wish to acknowledge National Science Foundation Sri Lanka for the financial support under the grant, RG/2017/BS/02 and Wayamba University of Sri Lanka. Kuliyapitiya, Sri Lanka.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kapuralage Wathsala Prasadini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasadini, K.W., Perera, K.S. & Vidanapathirana, K.P. Preliminary study on the performance of a redox capacitor with the use of ionic liquid-based gel polymer electrolyte and polypyrrole electrodes. J Mater Sci: Mater Electron 32, 17629–17636 (2021). https://doi.org/10.1007/s10854-021-06296-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06296-5

Navigation