Skip to main content
Log in

Raman scattering, electronic transport and dielectric features of Co-doped DyCrO3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

DyCr1−xCoxO3 (0 ≤ x ≤ 0.3) system synthesized through sol–gel auto-combustion process is investigated to study the impact of cobalt (Co) doping on physical features and conduction mechanism of DyCrO3. X-ray diffraction data affirm the single-phase nature of this system that conforms in orthorhombic crystal symmetry with Pbnm space group. Raman spectra display the variation in intensity and position of Raman bands on doping. The broadening of full-width at half-maximum (FWHM) in case of doped samples indicates the structural distortion due to Co doping. Transmission electron microscopy (TEM) images reveal the nano-sized spherical particles, and the clearly distinguishable planes in high-resolution TEM images establish the crystalline nature of these samples. D.C. resistivity declines with the increase in Co doping, and resistivity data fit well to small-polaron hopping and variable-range hopping models. The dielectric permittivity plots for all the samples exhibit dielectric peak which may be related to those of weak ferroelectric systems. The Cole–Cole plots exhibit depressed semi-circular patterns which suggest the non-Debye nature and the distributed relaxation times. The temperature dependence of imaginary part of electric modulus (M″) shows relaxation peaks at relatively lower temperatures. The a.c. conductivity (\({\sigma }_{\mathrm{ac}}\)) shows gradual increase with the rise in Co doping, especially near the room temperature. The temperature dependence of the exponent factor ‘n’ suggests that correlated barrier hopping and non-overlapping small-polaron tunnelling models govern the conduction mechanism in this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. M.C. Weber, J. Kreisel, P.A. Thomas, M. Newton, K. Sardar, R.I. Walton, Phonon Raman scattering of RCrO3 perovskites (R = Y, La, Pr, Sm, Gd, Dy, Ho, Yb, Lu). Phys. Rev. B 85, 054303 (2012)

    Article  Google Scholar 

  2. K.D. Singh, R. Pandit, R. Kumar, Effect of rare earth ions on structural and optical properties of specific perovskite orthochromates; RCrO3 (R = La, Nd, Eu, Gd, Dy, and Y). Solid State Sci. 85, 70 (2018)

    Article  CAS  Google Scholar 

  3. J.A. Alonso, V. Pomjakushin, J.B. Goodenough, Y. Ren, J.-Q. Yan, J.-G. Cheng, Intrinsic structural distortion and superexchange interaction in the orthorhombic rare-earth perovskites RCrO3. Phys. Rev. B 81, 214115 (2010)

    Article  Google Scholar 

  4. S. Saha, S. Chanda, A. Dutta, T.P. Sinha, Dielectric relaxation and phonon modes of NdCrO3 nanostructure. J. Sol–Gel Sci. Technol. 69, 553 (2014)

    Article  CAS  Google Scholar 

  5. S. Biswas, S. Pal, Negative magnetization in perovskite RTO3 (R = rare earth, T = Cr/Mn). Rev. Adv. Mater. Sci. 53, 206 (2018)

    Article  CAS  Google Scholar 

  6. K. Sardar, M.R. Lees, R.J. Kashtiban, J. Sloan, R.I. Walton, Direct hydrothermal synthesis and physical properties of rare-earth and yttrium orthochromite perovskites. Chem. Mater. 23, 48 (2011)

    Article  CAS  Google Scholar 

  7. I.H. Lone, J. Aslam, N.R.E. Radwan, A.H. Bashal, A.F.A. Ajlouni, A. Akhter, Multiferroic ABO3 transition metal oxides: a rare interaction of ferroelectricity and magnetism. Nanoscale Res. Lett. 14, 142 (2019)

    Article  Google Scholar 

  8. D.I. Khomskii, Multiferroics: different ways to combine magnetism and ferroelectricity. J. Magn. Magn. Mater. 306, 1 (2004)

    Article  Google Scholar 

  9. K.D. Singh, F. Singh, R. Kumar, Consequences of R3+ cationic radii on the dielectric and magnetic behavior of RCrO3 perovskites. Appl. Phys. A 126, 148 (2020)

    Article  CAS  Google Scholar 

  10. J.R. Sahu, R. Serrao, N. Ray, V. Waghmare, C.N.R. Rao, Rare earth chromites: a new family of multiferroics. J. Mater. Chem. 17, 42 (2007)

    Article  CAS  Google Scholar 

  11. R. Ahsan, A. Mitra, S. Omar, M.Z. Rahman Khan, M.A. Basith, Sol–gel synthesis of DyCrO3 and 10% Fe-doped DyCrO3 nanoparticles with enhanced photocatalytic hydrogen production abilities. RSC Adv. 8, 14258 (2018)

    Article  CAS  Google Scholar 

  12. B.M. Siemons, A. Leifert, U. Simon, Preparation and gas sensing characteristics of nanoparticulate p-type semiconducting LnFeO3 and LnCrO3 materials. Adv. Funct. Mater. 3, 2189 (2007)

    Article  Google Scholar 

  13. S. Mcintosh, R.J. Gorte, Direct hydrocarbon solid oxide fuel cells. Chem. Rev. 104, 4845 (2004)

    Article  CAS  Google Scholar 

  14. B. Van Laar, J.B.A.A. Elemans, B. Van Laar, J.B.A.A. Elemans, On the magnetic structure of DyCro3. J. Phys. 32, 301 (1971)

    Article  Google Scholar 

  15. G.V. Subba Rao, B.M. Wanklyn, C.N.R. Rao, Electrical transport in rare earth ortho-chromites, -manganites and -ferrites. J. Phys. Chem. Solids 32, 345 (1971)

    Article  Google Scholar 

  16. H.B. Lal, R.D. Dwivedi, K. Gaur, Pyroelectric and dielectric properties of some heavy rare-earth orthochromites. J. Mater. Sci.: Mater. Electron. 7, 35 (1996)

    CAS  Google Scholar 

  17. A. McDannald, L. Kuna, M. Jain, Magnetic and magnetocaloric properties of bulk dysprosium chromite. J. Appl. Phys. 114, 113904 (2016)

    Article  Google Scholar 

  18. B. Yuan, J. Yang, X.Z. Zuo, X.C. Kan, X.B. Zhu, J.M. Dai, W.H. Song, Y.P. Sun, Observation of ferroelectricity and magnetoelectric coupling in Mn-doped orthochromite DyCr0.5Mn0.5O3. J. Alloys Compd. 656, 830 (2016)

    Article  CAS  Google Scholar 

  19. S. Yamaguchi, Y. Okimoto, Y. Tokura, Bandwidth dependence of insulator-metal transitions in perovskite cobalt oxides. Phys. Rev. B 54, R11022 (1996)

    Article  CAS  Google Scholar 

  20. A.K. Zvezdin, A.A. Mukhin, Magnetoelectric interactions and phase transitions in a new class of multiferroics with improper electric polarization. JETP Lett. 88, 505 (2008)

    Article  CAS  Google Scholar 

  21. Q.Y. Xie, Z.P. Wu, X.S. Wu, W.S. Tan, Sr content on the structure and magnetic properties of La1−xSrxCoO3. J. Alloys Compd. 474, 81–85 (2009)

    Article  CAS  Google Scholar 

  22. T. Ishihara, Perovskite Oxide for Solid Oxide Fuel Cells (Springer Science & Business Media, Boston, 2009).

    Book  Google Scholar 

  23. S.V. Kurgan, G.S. Petrov, L.A. Bashkirov, A.I. Klyndyuk, Properties of Nd1-xGdxCoO3 solid solutions. Inorg. Mater. 40, 1224 (2004)

    Article  CAS  Google Scholar 

  24. K. Knížek, Z. Jirák, J. Hejtmánek, M. Veverka, M. Maryško, G. Maris, T.T.M. Palstra, Structural anomalies associated with the electronic and spin transitions in LnCoO3. Eur. Phys. J. B 47, 213 (2005)

    Article  Google Scholar 

  25. A. Fondado, J. Mira, J. Rivas, C. Rey, M.P. Breijo, M.A. Senarıs-Rodrıguez, Role of the rare-earth on the electrical and magnetic properties of cobalt perovskites. J. Appl. Phys. 87, 5612 (2000)

    Article  Google Scholar 

  26. A.K. Tripathi, H.B. Lal, Electrical transport in light rare-earth orthochromites. J. Mater. Sci. 17, 1595 (1982)

    Article  CAS  Google Scholar 

  27. J. Laverdière, S. Jandl, A.A. Mukhin, V.Y. Ivanov, V.G. Ivanov, M.N. Iliev, Spin-phonon coupling in orthorhombic RMnO3 (R= Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y): a Raman study. Phys. Rev. B 73, 214301 (2006)

    Article  Google Scholar 

  28. C. Girardot, J. Kreisel, S. Pignard, N. Caillault, F. Weiss, Raman scattering investigation across the magnetic and metal-insulator transition in rare earth nickelate RNiO3 (R = Sm, Nd) thin films. Phys. Rev. B 78, 104101 (2008)

    Article  Google Scholar 

  29. N.D. Todorov, M.V. Abrashev, V.G. Ivanov, G.G. Tsutsumanova, V. Marinova, Y.-Q. Wang, M.N. Iliev, Comparative Raman study of isostructural YCrO3 and YMnO3: effects of structural distortions and twinning. Phys. Rev. B 83, 224303 (2011)

    Article  Google Scholar 

  30. M.N. Iliev, A.P. Litvinchuk, V.G. Hadjiev, Y.-Q. Wang, J. Cmaidalka, R.-L. Meng, Y.-Y. Sun, N. Kolev, M.V. Abrashev, Raman spectroscopy of low-temperature (Pnma) and high-temperature (R 3 c) phases of LaCrO3. Phys. Rev. B 74, 214301 (2006)

    Article  Google Scholar 

  31. M. Udagawa, K. Kohn, N. Koshizuka, T. Tsushima, K. Tsushima, Influence of magnetic ordering on the phonon Raman spectra in YCrO3 and GdCrO3. Solid State Commun. 16, 779 (1975)

    Article  CAS  Google Scholar 

  32. F. Unit, F. Physik, Magnetic ordering and phonon Raman spectra of ErCrO3. Phys. B+ C 89, 205 (1977)

    Article  Google Scholar 

  33. W. Kaczmarek, I. Mörke, Raman scattering and the antiferromagnetic phase transition in HoCrO3. J. Magn. Magn. Mater. 58, 91 (1986)

    Article  CAS  Google Scholar 

  34. Y. Du, Z.X. Cheng, X.-L. Wang, S.X. Dou, Structure, magnetic, and thermal properties of Nd1−xLaxCrO3 (0≤ x≤ 1.0). J. Appl. Phys. 108, 093914 (2010)

    Article  Google Scholar 

  35. H.B. Lal, R.D. Dwivedi, K. Gaur, Pyroelectric and dielectric properties of some light rare-earth orthochromites. J. Mater. Sci.: Mater. Electron. 1, 204 (1990)

    CAS  Google Scholar 

  36. P. Gupta, P. Poddar, Using Raman and dielectric spectroscopy to elucidate the spin phonon and magnetoelectric coupling in DyCrO3 nanoplatelets. RSC Adv. 5, 10094 (2015)

    Article  CAS  Google Scholar 

  37. A.A. Qahtan, S. Husain, A. Somvanshi, M. Fatema, W. Khan, Investigation of alteration in physical properties of dysprosium orthochromite instigated through cobalt doping. J. Alloys Compd. 843, 155637 (2020)

    Article  CAS  Google Scholar 

  38. N. Ray, U.V. Waghmare, Coupling between magnetic ordering and structural instabilities in perovskite biferroics: a first-principles study. Phys. Rev. B 77, 134112 (2008)

    Article  Google Scholar 

  39. D. Phelan, D. Louca, K. Kamazawa, M.F. Hundley, K. Yamada, Influence of the ionic size on the evolution of local Jahn-Teller distortions in cobaltites. Phys. Rev. B 76, 104111 (2007)

    Article  Google Scholar 

  40. T.S. Chan, R.S. Liu, C.C. Yang, W.H. Li, Y.H. Lien, C.Y. Huang, J.F. Lee, Chemical size effect on the magnetic and electrical properties in the (Tb1-xEux)MnO3 (0 ≤ x ≤ 1.0) system. J. Phys. Chem. B 111, 2262 (2007)

    Article  CAS  Google Scholar 

  41. M.N. Iliev, M.V. Abrashev, H.-G. Lee, V.N. Popov, Y.Y. Sun, Ch. Thomsen, R.L. Meng, C.W. Chu, Raman spectroscopy of orthorhombic perovskitelike YMnO3 and LaMnO3. Phys. Rev. B 57, 2872 (1998)

    Article  CAS  Google Scholar 

  42. S. Wang, C. Hou, L. Yuan, M. Qu, B. Zou, D. Lu, Hydrothermal preparation of perovskite structures DyCrO3 and HoCrO3. Dalton Trans. 45, 17593 (2016)

    Article  CAS  Google Scholar 

  43. S. Mo, H. He, Q. Ren, S. Li, W. Zhang, Fu. Mingli, L. Chen, Wu. Junliang, Y. Chen, D. Ye, Macroporous Ni foam-supported Co3O4 nanobrush and nanomace hybrid arrays for high-efficiency CO oxidation. J. Environ. Sci. 75, 136 (2019)

    Article  Google Scholar 

  44. N. Ahmad, S. Khan, M.M.N. Ansari, Exploration of Raman spectroscopy, dielectric and magnetic properties of (Mn, Co) co-doped SnO2 nanoparticles. Phys. B 558, 131–141 (2019)

    Article  CAS  Google Scholar 

  45. A. Cantarero, T. Keating, Piezo-Raman measurements and anharmonic parameters in silicon and diamond. Phys. Rev. B 41, 7529 (1990)

    Article  Google Scholar 

  46. I.H. Campbell, P.M. Fauchet, The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Commun. 58, 739 (1986)

    Article  CAS  Google Scholar 

  47. H. Xu, X. Hu, L. Zhang, Generalized low-temperature synthesis of nanocrystalline rare-earth orthoferrites LnFeO3(Ln = La, Pr, Nd, Sm, Eu, Gd). Cryst. Growth Des. 8, 2061 (2008)

    Article  CAS  Google Scholar 

  48. N.G. Nair, A. Das, V. Subramanian, P.N. Santhosh, Magnetic structure and magnetodielectric effect of YFe0.5Cr0.5O3. J. App. Phys. 113, 213907 (2013)

    Article  Google Scholar 

  49. M.T. Buscaglia, V. Buscaglia, M. Viviani, P. Nanni, M. Hanuskova, Influence of foreign ions on the crystal structure of BaTiO3. J. Eur. Ceram. Soc. 20, 1997–2007 (2000)

    Article  CAS  Google Scholar 

  50. O. Parkash, D. Kumar, R.K. Dwivedi, K.K. Srivastava, P. Singh, S. Singh, Effect of simultaneous substitution of La and Mn on dielectric behavior of barium titanate ceramic. J. Mater. Sci. 42, 5490–5496 (2007)

    Article  CAS  Google Scholar 

  51. M.R. Shah, A.A. Hossain, Structural, dielectric and complex impedance spectroscopy studies of lead free Ca0.5+xNd0.5−x(Ti0.5Fe0.5)O3. J. Mater. Sci. Technol. 29, 323–329 (2013)

    Article  CAS  Google Scholar 

  52. A.K. Tripathi, H.B. Lal, Electrical transport in rare-earth orthochromites. Mater. Res. Bull. 15, 233 (1980)

    Article  CAS  Google Scholar 

  53. A. You, M.A.Y. Be, I. In, Nature of small-polaron hopping conduction and the effect of Cr doping on the transport properties of rare-earth manganite. J. Chem. Phys. 115, 1550 (2017)

    Google Scholar 

  54. W. Khan, A.H. Naqvi, M. Gupta, S. Husain, R. Kumar, Small polaron hopping conduction mechanism in Fe doped LaMnO3. J. Chem. Phys. 135, 054501 (2011)

    Article  Google Scholar 

  55. N. Panwar, I. Coondoo, S. Kumar, S. Kumar, Structural, electrical, optical and magnetic properties of SmCrO3 chromites: influence of Gd and Mn co-doping. J. Alloys Compd. 792, 1122 (2019)

    Article  CAS  Google Scholar 

  56. M. Viret, L. Ranno, J.M.D. Coey, Colossal magnetoresistance of the variable range hopping regime in the manganites. J. Appl. Phys. 81, 4964 (1997)

    Article  CAS  Google Scholar 

  57. C. Korte, A. Peters, J. Janek, D. Hesse, N. Zakharov, Ionic conductivity and activation energy for oxygen ion transport in superlattices-the semicoherent multilayer system YSZ (ZrO2+9.5 mol% Y2O3)/Y2O3. Phys. Chem. Chem. Phys. 10, 4623 (2008)

    Article  CAS  Google Scholar 

  58. W. Ncib, A. Ben Jazia Kharrat, M.A. Wederni, N. Chniba-Boudjada, K. Khirouni, W. Boujelben, Investigation of structural, electrical and dielectric properties of sol-gel prepared La0.67-xEuxBa0.33Mn0.85Fe0.15O3 (x = 0.0, 0.1) manganites. J. Alloys Compd. 768, 249 (2018)

    Article  CAS  Google Scholar 

  59. A. You, M.A.Y. Be, I. In, Temperature dependent transport and dielectric properties of cadmium titanate nanofiber mats. AIP Adv. 3, 032146 (2013)

    Article  Google Scholar 

  60. T. Patri, P. Justin, P.D. Babu, A. Ghosh, Analysis of dielectric and magnetic phase transitions in Yb (Fe0.5Cr0.5)O3 bulk perovskite. Appl. Phys. A 125, 224 (2019)

    Article  Google Scholar 

  61. N. Zarrin, S. Husain, D.D. Gaur, A. Somvanshi, M. Fatema, Dopant incited alterations in structural, morphological, optical, and dielectric properties of Er-doped LaCrO3. J. Mater. Sci.: Mater. Electron. 31, 3466–3478 (2020)

    CAS  Google Scholar 

  62. M. Pecovska-Gjorgjevich, S. Aleksovska, S. Dimitrovska-Lazova, M. Marinšek, The role of Cr/Co substitution on dielectric properties of gadolinium orthochromite. Phys. Scr. 91, 045805 (2016)

    Article  Google Scholar 

  63. K.S. Cole, R.H. Cole, Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 9, 341 (1941)

    Article  CAS  Google Scholar 

  64. J.L. Ye, C.C. Wang, W. Ni, X.H. Sun, Dielectric properties of ErFeO3 ceramics over a broad temperature range. J. Alloys Compd. 617, 850–854 (2014)

    Article  CAS  Google Scholar 

  65. B. Bar, Frequency dependent dielectric properties in Schottky diodes based on rubrene organic semiconductor. Phys. E 54, 171 (2013)

    Article  Google Scholar 

  66. J. Liu, C.G. Duan, W.G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, Dielectric permittivity and electric modulus in Bi2Ti4O11. J. Chem. Phys. 119, 2812 (2003)

    Article  CAS  Google Scholar 

  67. Y. Ben Taher, N. Moutia, A. Oueslati, M. Gargouri, Electrical properties, conduction mechanism and modulus of diphosphate compounds. RSC Adv. 6, 39750 (2016)

    Article  CAS  Google Scholar 

  68. N. Zarrin, S. Husain, W. Khan, S. Manzoor, Sol-gel derived cobalt doped LaCrO3: structure and physical properties. J. Alloys Compd. 784, 541 (2019)

    Article  CAS  Google Scholar 

  69. S. Dimitrovska-lazova, Impedance and AC conductivity of GdCr1−xCoxO3 (x = 0, 0.33, 0.5, 0.67 and 1) perovskites. J. Am. Ceram. Soc. 3871, 3864 (2014)

    Google Scholar 

  70. A.O.A. Keelani, S. Husain, Temperature dependent dielectric properties and ac conductivity of GdFe1−xMnxO3 (0 ≤ x ≤ 0.3) perovskites. J. Mater. Sci.: Mater. Electron. 30, 20119 (2019)

    CAS  Google Scholar 

  71. A.M.A. El, M.K. El Nimr, S.M. Attia, D. El Kony, A.H. Al-hammadi, Studies of AC electrical conductivity and initial magnetic permeability of rare-earth-substituted Li–Co ferrites. J. Magn. Magn. Mater. 297, 33 (2006)

    Article  Google Scholar 

  72. S. Khan, K. Asokan, H. Ahmed, I. Khan, Magnetic and electrical properties of In doped cobalt ferrite nanoparticles. J. Appl. Phys. 112, 084321 (2012)

    Article  Google Scholar 

  73. R.D. Shannon, Revised effective ionic radii and systematic study of inter atomic distances in halides and chalcogenides in halides and chaleogenides. Acta Crystallogr. A 32, 751 (1976)

    Article  Google Scholar 

  74. N. Ahmad, S. Khan, M. Mohsin, N. Ansari, Exploration of Raman spectroscopy, dielectric and magnetic properties of (Mn, Co) co-doped SnO2 nanoparticles. Phys. B 558, 131 (2019)

    Article  CAS  Google Scholar 

  75. P. Murali, K.E.B. Hima, K. Suneetha, Frequency and temperature dependence of electrical properties of barium and gadolinium substituted SrBi2Nb2O9 ceramics. J. Mater. Sci. 42, 7363 (2007)

    Article  Google Scholar 

  76. S.R. Elliott, A.c. conduction in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 36, 135–217 (1987)

    Article  CAS  Google Scholar 

  77. P. Taylor, A.R. Long, Frequency-dependent loss in amorphous semiconductors. Adv. Phys. 31, 553–637 (1982)

    Article  Google Scholar 

  78. S. Manzoor, S. Husain, A. Somvanshi, M. Fatema, N. Zarrin, Impurity induced dielectric relaxor behavior in Zn doped LaFeO3. J. Mater. Sci. Mater. Electron. 30, 19227 (2019)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahid Husain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qahtan, A.A.A., Husain, S., Zarrin, N. et al. Raman scattering, electronic transport and dielectric features of Co-doped DyCrO3. J Mater Sci: Mater Electron 32, 15108–15133 (2021). https://doi.org/10.1007/s10854-021-06062-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06062-7

Navigation