Skip to main content
Log in

A comprehensive investigation of the structural, chemical, and dielectric properties of co-doped YMnO3 multiferroic component

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The solid-state reaction technique was employed to synthesize compounds of YMnO3 (YMO) and YMn1-xCoxO3 (YMCO) with various Co doping levels (x = 0.01, 0.10, 0.20, and 0.40), where Co atoms partially substituted Mn sites. XRD studies confirmed the presence of two phases, YMO and Y0.98CoO3 (YCO), for doping ratios above x = 0.10. Additionally, an increase in crystalline size was observed with cobalt substitution. Surface characteristics of synthesized pellets were examined using scanning electron microscopy (SEM), revealing a less porous structure with cobalt doping. XPS analysis elucidated valence states, showing the presence of both Mn3+ and Mn4+, as well as Co2+ and Co3+. The x = 0.20 and 0.40 Co-doped samples exhibited lower grain and grain boundary energies compared to other samples, such as a decrease from 0.556 eV (undoped) to 0.195 eV (x = 0.20). Moreover, the dielectric constants of x = 0.20 and 0.40 cobalt-doped samples (around 320) significantly surpassed the undoped sample (around 22) at 106 Hz and 100 °C. The x = 0.20 cobalt-doped sample demonstrated the highest conductivity at 100 °C and 106 Hz (31 × 10–4 S/cm). FT-IR analysis provided insights into vibration and bending modes, and frequency- and temperature-dependent electrical features were investigated. It was observed that a single conduction model is insufficient to fully explain the conduction mechanism in these samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. R. Von Helmolt, B. Holzapfel, L. Schulz, K. Samwer, Phys. Rev. 71, 2331 (1993)

    Google Scholar 

  2. K. Chahara, T. Ohno, M. Kasai, Y. Kozono, Appl. Phys. Lett. 63, 1993 (1990)

    Google Scholar 

  3. S. Jin, T. H. Tiefel, M.Mc. Cormack, R. A. Fastnachat, R. Ramesh, L. H. Chen, Chem. Sci. 264, 413, (1994)

  4. P. Murugavel, P. Padhan, W. Prellier, Enhanced magnetoresistance in ferromagnetic Pr0.85Ca0.15MnO3∕ferroelectricPr0.85Ca0.15MnO3∕ferroelectricBa0.6Sr0.4TiO3Ba0.6Sr0.4TiO3 superlattice films, Appl. Phys. Lett. 85, 4992–4994 (2004)

  5. T. Lottermoser, T. Lonkai, U. Amann, D. Hohlwein, J. Ihringer, M. Fiebig, Magnetic phase control by an electric field. Nature 430, 541–544 (2004)

    ADS  PubMed  Google Scholar 

  6. H. Zheng, J. Wang, S.E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S.R. Shinde, S.B. Ogale, F. Bai, D. Viehland, Y. Jia, D.G. Schlom, M. Wuttig, A. Roytburd, R. Ramesh, Multiferroic BaTiO3-CoFe2O4 nanostructures. Science 303, 661 (2004)

    ADS  PubMed  Google Scholar 

  7. N.A. Spaldin, M. Fiebig, The renaissance of magnetoelectric multiferroics. Science 309, 391–392 (2005)

    PubMed  Google Scholar 

  8. M.P. Singh, W. Prellier, C. Simon, B. Raveau, Magnetocapacitance effect in perovskite-superlattice based multiferroics. Appl. Phys. Lett. 87, 022505–022513 (2005)

    ADS  Google Scholar 

  9. S.X. Dong, J.Y. Zhai, N.G. Wang, F.M. Bai, J.F. Li, D. Vieland, T.A. Lograsso, Fe–Ga/Pb(Mg1∕3Nb2∕3)O3–PbTiO3Fe–Ga∕Pb(Mg1∕3Nb2∕3)O3–PbTiO3 magnetoelectric laminate composites. Appl. Phys. Lett. 87, 222504–222513 (2005)

    ADS  Google Scholar 

  10. N.G. Wang, J. Cheng, A. Pyatakov, A.K. Zvezdin, J.F. Li, L.E. Cross, D. Vieland, Multiferroic properties of modified BiFeO3−PbTiO3-based ceramics: random-field induced release of latent magnetization and polarization. Phys. Rev. B 72, 104434–104435 (2005)

    ADS  Google Scholar 

  11. C.W. Nan, G. Liu, Y.H. Lin, H.D. Chen, Magnetic-field-induced electric polarization in multiferroic nanostructures. Phys. Rev. Lett. 94, 197203 (2005)

    ADS  PubMed  Google Scholar 

  12. J. Slutsker, I. Levin, J.H. Li, A. Artemev, A.L. Royburd, Effect of elastic interactions on the self-assembly of multiferroic nanostructures in epitaxial films. Phys. Rev. B 73, 184127 (2006)

    ADS  Google Scholar 

  13. T. Wu, M.A. Zurbuchen, S. Saha, R.V. Wang, S.K. Streiffer, J.F. Mitchell, Observation of magnetoelectric effect in epitaxial ferroelectric film/manganite crystal heterostructures. Phys. Rev. B 73, 134416 (2006)

    ADS  Google Scholar 

  14. Y. Yamasaki, S. Miyasaka, Y. Kaneko, J.P. He, T. Arima, Y. Tokura, Magnetic reversal of the ferroelectric polarization in a multiferroic spinel oxide. Phys. Rev. Lett. 96, 249902 (2006)

    ADS  Google Scholar 

  15. X. Qi, J. Dho, R. Tomov, M.G. Blamire, J.L. MacManus-Driscoll, Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3, Appl. Phys. Lett. 86, 062903(1)–062903(3), (2005)

  16. R. K. Thakur, R. Thakur, S. Samatham, N. Kaurav, V. Ganesan, and N. K. Gaur. Dielectric, magnetic, and thermodynamic properties of Y1¡xSrxMnO3 (x = 0.1 and 0.2). J. Appl. Phys., 112, 104115, (2012)

  17. H. Satoh, J.-I. Iwasaki, K. Kawase, N. Kamegashira, High temperature enthalpies and heat capacities of YbMnO3 and YMnO3. J. Alloys Compd. 268, 42–46 (1998)

    Google Scholar 

  18. J.A. Alonso, M.J. Martínez-Lope, M.T. Casais, M.T. Fernández-Díaz, Evolution of the Jahn-Teller distortion of MnO6 octahedra in RMnO3 perovskites (R = Pr, Nd, Dy, Tb, Ho, Er, Y): a neutron diffraction study. Inorg. Chem. 39, 917–923 (2000)

    PubMed  Google Scholar 

  19. J.A. Alonso, M.J. Martínez-Lope, M.T. Casa, M.T. Ferna, Evolution of the magnetic structure of hexagonal HoMnO3 from neutron powder diffraction data. Chem. Mater. 13, 1497–1505 (2001)

    Google Scholar 

  20. K. Uusi-Esko, M. Karppinen, Extensive series of hexagonal and orthorhombic RMnO3 (R = Y, La, Sm, Tb, Yb, Lu) thin films by atomic layer deposition. Chem. Mater. 23, 1835–1840 (2011)

    Google Scholar 

  21. D. Gutiérrez, O. Peña, P. Durán, C. Moure, J. Eur. Ceram. Soc., 22 (2002), p. 567 [11] O. Peña, M. Bahout, D. Gutierrez, J. F. Fernandez, P. Duran, C. Moure, J. Phys. Chem. Solids, 61, 2019 (2000)

  22. C. Moure, D. Gutierrez, O. Pena, P. Duran, Structural characterization of YMexMn1−xO3 (Me=Cu, Ni, Co) perovskites. J. Solid State Chem. 163, 377–384 (2002)

    ADS  Google Scholar 

  23. S.L. Samal, W. Green, S.E. Lofland, K.V. Ramanujachary, D. Das, A.K. Ganguli, Study on the solid solution of YMn1−xFexO3: Structural, magnetic and dielectric properties. J. Solid State Chem. 181, 61–66 (2008)

    ADS  Google Scholar 

  24. L. P. Yang, A. M. Zhang, K. Wang, X. S. Wu, and Z. Y. Zhai, The magnetic transition temperature tuned by strain in YMn0.9Ru0.1O3 thin films, AIP Adv. 8(5), 055805 (2017)

  25. J. Y. Cui1, A. M. Zhang, J. Y. Shi, H. F. Cao, X. S. Wu, Y. M. Zhang, Competition of magnetic ordering and spin-phonon coupling in multiferroic hexagonal YMn1−xCrxO3. J. Appl. Phys. 126,114103 (2019)

  26. T. Asaka, K. Nemoto, K. Kimoto, T. Arima, Y. Matsui, Crystallographic superstructure of Ti-doped hexagonal YMnO3. Phys. Rev. B 71, 014114 (2005)

    ADS  Google Scholar 

  27. K. Asokan, Y.S. Chen, C.W. Pao, H.M. Tsai, C.W.O. Lee, C.H. Lin, Effect of Co, Ni, and Cu substitution on the electronic structure of hexagonal YMnO3 studied by x-ray absorption spectroscopy. Appl. Phys. Lett. 95, 131901 (2009)

    ADS  Google Scholar 

  28. O. Polat, M. Coskun, F.M. Coskun, Z. Durmus, Y. Caglar, M. Caglar, A. Turut, Tailoring the band gap of ferroelectric YMnO3 through tuning the Os doping level. J. Mater. Sci. Mater. Electron. 30, 3443 (2019)

    Google Scholar 

  29. O. Polat, M. Coskun, F.M. Coskun, Z. Durmus, M. Caglar, A. Turut, Os doped YMnO3 multiferroic: a study investigating the electrical properties through tuning the doping level. J. Alloy. Compd. 752, 274–288 (2018)

    Google Scholar 

  30. F. Wan, X. Bai, Y. Wang, Z. Hao, L. Gao, J. Li, N.S. Perov, C. Cao, Effect of Zr-doping on the structure and magnetic properties of YMnO3 ceramics. J. Mater. Sci. Mater. Electron. 34, 926 (2023)

    Google Scholar 

  31. J. Shukla, P. Saxena, P. Joshi et al., Impact of aliovalent ions doping on structural and electrical characteristics of YMnO3 ceramic. Appl. Phys. A 129, 731 (2023)

    ADS  Google Scholar 

  32. P.K. Sharma, M. Pramanik, M.V. Limaye, S.B. Singh, J. Phys. Chem. C 127(33), 16259–16266 (2023)

    Google Scholar 

  33. B. Munisha, B. Mishra, J. Nanda, N.K. Sahoo, D. Ghosh, K.J. Sankaran et al., Enhanced photocatalytic degradation of 4-nitrophenol using polyacrylamide assisted Ce-doped YMnO3 nanoparticles. J. Rare Earths 41(10), 1541 (2023)

    Google Scholar 

  34. D. Gutiérrez, O. Peña, K. Ghanimi, P. Durán, C. Moure. J. Phys. Chem. Solids 63, 1975–1982 (2002)

    ADS  Google Scholar 

  35. I.G. Ismailzade, S.A. Kizhaev, Determination of the Curie point in ferroelectric YMnO3 and YbMnO3. Sov. Phys. Solid State 7, 236–238 (1965)

    Google Scholar 

  36. G.A. Smolnskii, I.E. Chupis, Ferroelectromagnets. Sov. Phys. Usp. 25, 475–493 (1982)

    ADS  Google Scholar 

  37. A. Munoz, J.A. Alonso, M.J. Martinez-Lope, M.T. Casais, J.L. Martinez, M.T. Fernandez-Diaz, Magnetic structure of hexagonal RMnO3 (R=Y, Sc): thermal evolution from neutron powder diffraction data. Phys. Rev. B 62, 9498–9510 (2000)

    ADS  Google Scholar 

  38. G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009)

    Google Scholar 

  39. T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, Y. Tokura, Magnetocapacitance effect in multiferroic BiMnO3. Phys. Rev. B 67, 180401(R) (2003)

    ADS  Google Scholar 

  40. K.F. Wang, J.M. Liu, Z.F. Ren, Multiferroicity: the coupling between magnetic and polarization orders. Adv. Phys. 58, 321–448 (2009)

    ADS  Google Scholar 

  41. F. Wan, L. Li, X. Bai et al., Structure and dielectric relaxation behaviors of Co-doped YMnO3 multiferroic ceramics. J. Mater. Sci. Mater. Electron. 33, 17361–17371 (2022)

    Google Scholar 

  42. O. Polat, M. Coskun, Y. Yildirim, P. Roupcova, D. Sobola, C. Sen, Z. Durmus, M. Caglar, A. Turut, Variation in the dielectric and magnetic characteristics of multiferroic LuFeO3 as a result of cobalt substitution at Fe sites. J. Alloy. Compd. 963, 170939 (2023)

    Google Scholar 

  43. M. Coskun, O. Polat, F.M. Coskun, Z. Durmus, M. Caglar, A. Turut, The influence of cobalt (Co) doping on the electrical and dielectric properties of LaCr1-xCoxO3 perovskite-oxide compounds. Mater. Sci. Semicond. Process. 109, 104923 (2020)

    Google Scholar 

  44. O. Polat, M. Caglar, F.M. Coskun, M. Coskun, Y. Caglar, A. Turut, An experimental investigation: the impact of cobalt doping on optical properties of YbFeO3-ẟ thin film. Mater. Res. Bull. 119, 110567 (2019)

    Google Scholar 

  45. O. Polat, M. Coskun, F.M. Coskun et al., Co doped YbFeO3: exploring the electrical properties via tuning the doping level. Ionics 25, 4013–4029 (2019)

    Google Scholar 

  46. M. Coskun, O. Polat, F.M. Coskun, Z. Durmus, M. Caglar, A. Turut Synthesis, characterization and wide range frequency and temperature dependent electrical modulus study of LaCrO3 and cobalt (Co) doped LaCrO3 perovskite compounds Mater. Sci. Eng., B, 248,114410 (2019)

  47. F. Mukhtar, T. Munawar, M.S. Nadeem, M.N. ur Rehman, M. Riaz, F. Iqbal, Dual S-scheme heterojunction ZnO–V2O5–WO3 nanocomposite with enhanced photocatalytic and antimicrobial activity, Mater. Chem. Phys. 263, 124372 (2021)

  48. S. Aktas, I.S. Hasanli, A. Demiroglu, M. Caglar, Band gap tunability and optical properties of sol-gel derived Fe-doped CeO2 films. Physica B 675, 415621 (2024)

    Google Scholar 

  49. F. Wan, X. Lin, X. Bai, X. Han, K. Song, J. Zheng, C. Cao, Crystalline structure and dielectric properties of multiferroics Cr-doped YMnO3. J. Mater. Sci. Mater. Electron. 27, 3082–3087 (2016)

    Google Scholar 

  50. P.R. Mandal, T.K. Nath, Oxygen-vacancy and charge hopping related dielectric relaxation and conduction process in orthorhombic Gd doped YFe0.6Mn0.4O3 multiferroics. J. Alloys Comp. 628, 379–389 (2015)

  51. J. Hua, L. Wang, L. Shi, H. Huang, Oxygen reduction reaction activity of LaMn1-xCoxO3-graphene nanocomposite for zinc-air battery. Electrochim. Acta 161, 115–123 (2015)

    Google Scholar 

  52. F. Hao, J. Du, X.P. Han, F.Y. Cheng, Sol-gel synthesis of perovekite La1-xCaxMnO3(X = 0–0.4) nanoparticles for eletrocatalytic oxygen reduction. Chinese journal of inorganic chemistry. J. Chen, Chinese J. Inor. Chem. 29,1617, (2013)

  53. C. Zhanga, J. Su, X. Wang, F. Huang, J. Zhang, Y. Liu, L. Zhang, K. Min, Z. Wang, X. Lua, F. Yanc, J. Zhu, Study on magnetic and dielectric properties of YMnO3 ceramics. J. Alloy. Compd. 509, 7738–7741 (2011)

    Google Scholar 

  54. F. Wan, X. Lin, X. Bai, X. Han, K. Song, J. Zheng, C. Cao, Crystalline structure and dielectric properties of multiferroic Cr-doped YMnO3. J. Mater. Sci. Mater. Electron. 27, 3082–3087 (2016)

    Google Scholar 

  55. P.R. Ren, H.Q. Fan, X. Wang, Bulk conduction and nonlinear behaviour in multiferroic YMnO3 Appl. Phys. Lett. 103, 152905 (2013)

    Google Scholar 

  56. A.G. Kochura, A.T. Kozakov, K.A. Googlev, A.V. Nikolskii, X-ray photoelectron study of temperature effect on the valence state of Mn in single crystal YMnO3. J. Electron Spectrosc. Relat. Phenom. 195, 1–7 (2014)

    Google Scholar 

  57. A.G. Kochura, A.T. Kozakov, A.V. Nikolskii, K.A. Googlev, A.V. Pavlenko, I.A. Verbenko, L.A. Reznichenko, T.I. Krasnenko, Valence state of the manganese ions in mixed-valence La1−αBiβMn1+δO3±γ ceramics by Mn 2p and Mn 3s X-ray photoelectron spectra. J. Electron Spectrosc. Relat. Phenom. 185, 175–183 (2012)

    Google Scholar 

  58. V.A. Khomchenko, I.O. Troyanchuk, O.S. Mantytskaya, M. Tovar, H. Szymczak, Crystalline and magnetic structures of La1−xBixMnO3+δ manganites. J. Exp. Theor. Phys. 103, 54–59 (2006)

    ADS  Google Scholar 

  59. J. Li, Lu. Guanzhong, Wu. Guisheng, D. Mao, Y. Guo, Y. Wang, Y. Guo, Effect of TiO2 crystal structure on the catalytic performance of Co3O4/TiO2 catalyst for low-temperature CO oxidation. Catal. Sci. Technol. 4, 1268 (2014)

    Google Scholar 

  60. J. Liu, C.G. Duan, W.G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, Dielectric permittivity and electric modulus in Bi2Ti4O11. J. Chem. Phys. 119, 2812–2819 (2003)

    ADS  Google Scholar 

  61. C.A. Angell, Dynamic processes in ionic glasses. Chem. Rev. 90, 523–542 (1990)

    Google Scholar 

  62. A. Rouahi, A. Kahouli, F. Challali, M.P. Besland, C. Vallee, B. Yangui, S. Salimy, A. Goullet, A. Sylvestre, Impedance and electric modulus study of amorphous TiTaO thin films: highlight of the interphase effect. J. Phys. D Appl. Phys. 46, 065308 (2013)

    ADS  Google Scholar 

  63. H. Hammami, M. Arous, M. Lagache, A. Kallel, Study of the interfacial MWS relaxation by dielectric spectroscopy in unidirectional PZT fibres/epoxy resin composites. J. Alloy. Compd. 430, 1–8 (2007)

    Google Scholar 

  64. G.V. Rao, B.M. Wanklyn, C.N.R. Rao, Electrical transport in rare earth ortho-chromites, -manganites and -ferrites. J. Phys. Chem. Solids 32, 345 (1971)

    ADS  Google Scholar 

  65. M. Tomczyk, P.M. Vilarinho, A. Moreira, A. Almeida, High temperature dielectric properties of YMnO3 ceramics. J. Appl. Phys. 110, 064116 (2011)

    ADS  Google Scholar 

  66. U. Adem, N. Mufti, A.A. Nugroho, G. Catalan, B. Noheda, T.T.M. Palstra, Dielectric relaxation in YMnO3 single crystals. J. Alloy. Compd. 638, 228–232 (2015)

    Google Scholar 

  67. C. Moure, J.F. Fernandez, M. Villegas, P. Duran, Non-Ohmic behaviour and switching phenomena in YMnO3-based ceramic materials. J. Eur. Ceram. Soc. 19(1), 131–137 (1999)

    Google Scholar 

  68. F.G. Chang, G.L. Song, K. Fang, Q.J. Zeng, Effect of gadolinium substitution on dielectric properties of bismuth ferrite. J. Rare Earths 24, 273–276 (2006)

    Google Scholar 

  69. A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673–679 (1977)

    ADS  Google Scholar 

  70. G.H. Jonker, Analysis of the semiconducting properties of cobalt ferrite. J. Phys. Chem. Solids 9, 165–175 (1959)

    ADS  Google Scholar 

  71. A.K. Jonscher, Universal Relaxation Law (Chelsea Dielectric Press, London, 1996)

    Google Scholar 

  72. A. Dhahri, F. I. H. Rhou, J. Dhahri, E. Dhahri, M. A. Valente Structural and electrical characteristics of rare earth simple perovskite oxide La0.57Nd0.1Pb0.33Mn0.8Ti0.2O3. Solid State Commun. 151, 738–742 (2011)

  73. W.H. Jung, AC conduction mechanisms of Gd1/3Sr2/3FeO3 ceramic. Physica B 403, 636–638 (2008)

    ADS  Google Scholar 

  74. K. Wang, H. Chen, W.Z. Shen, AC electrical properties of nanocrystalline silicon thin films. Physica B 336, 369–378 (2003)

    ADS  Google Scholar 

  75. H.M. Abdelmoneim, Dielectric and AC conductivity οf potassium perchlorate, KCLO4. Acta Phisica Polonica A 117, 936–940 (2010)

    ADS  Google Scholar 

  76. S. R. Elliott, A theory of A.C. conduction in chalcogenide glasses, Philos. Mag. B. 36, 1291–1304 (1977)

  77. S. Tan, S. Yue, Y.H. Zhang, Phys. Lett. A 319, 530 (2003)

    ADS  Google Scholar 

  78. P. Jayabal, V. Sasirekha, J. Mayandi, K. Jeganathan, V. Ramakrishnan, J. Alloys Compd. 586, 456 (2014)

    Google Scholar 

Download references

Acknowledgements

This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) through Grant No: 116F025. We acknowledge Istanbul Medeniyet University Science and Advanced Technology Research Center (IMU-BILTAM).

Author information

Authors and Affiliations

Authors

Contributions

OP: Conceptualization, Investigation, Writing—Original Draft, Funding acquisition, Supervision. MC: Validation, Investigation. YY: Validation, Investigation. FMC: Validation, Investigation. ZD: Validation, Investigation. CS: Validation, Investigation. YC: Validation, Investigation. MC: Review & Editing, Investigation, Validation, Supervision. AT: Review & Editing.

Corresponding author

Correspondence to O. Polat.

Ethics declarations

Conflict of interest

There is no conflict of interest in any form for this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2056 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polat, O., Coskun, M., Yildirim, Y. et al. A comprehensive investigation of the structural, chemical, and dielectric properties of co-doped YMnO3 multiferroic component. Appl. Phys. A 130, 166 (2024). https://doi.org/10.1007/s00339-024-07335-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07335-8

Keywords

Navigation