Skip to main content
Log in

Dielectric relaxation and phonon modes of NdCrO3 nanostructure

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The neodymium chromate nanoparticles are synthesized by the sol–gel process. The phase formation with Pnma symmetry of the sample is confirmed by the Rietveld refinement of X-ray diffraction data. The particle size of the sample is determined by transmission electron microscopy. The band gap of the material is found to be 1.78 eV which is obtained by Tauc relation to UV-absorption spectrum. The room temperature Raman spectrum is fitted with the sum of 22 Lorentzian peaks. Dielectric relaxation of the sample has been investigated in the frequency range from 42 Hz to 1.1 MHz and in the temperature range from 303 to 573 K. The Cole–Cole model is used to explain the dielectric relaxation mechanism of the material. The complex impedance plane plot confirms the existence of the grain-boundary contribution to the relaxation of the sample. The frequency-dependent conductivity spectra follow the power law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ahn KH, Wu XW, Liu K, Chien CL (1996) Phys Rev B 54:15299

    Article  Google Scholar 

  2. Chou H, Wu CB, Hsu SG, Wu CY (1996) Phys Rev B 74:174405

    Article  Google Scholar 

  3. Tao J, Niebieskikwiat D, Varela M, Luo W, Schofield MA, Zhu Y, Salamon MB, Zuo JM, Pantelides ST, Pennycook SJ (2009) Phys Rev Lett 103:097202

    Article  Google Scholar 

  4. Shen Y, Liu M, San TH, Jiang P (2009) J Am Ceram Soc 92:2259–2264

    Article  Google Scholar 

  5. Yu Z, Sun Y, Wei W, Lu L, Wang X (2009) J Therm Anal Calorim 97:903–909

    Article  Google Scholar 

  6. Siemons M, Leifert A, Simon U (2007) Adv Funct Mater 17:2189–2197

    Article  Google Scholar 

  7. Hornreich RM, Komet Y, Nolan R, Wanklyn BM, Yaeger I (1975) Phys Rev B 12:5094–5104

    Article  Google Scholar 

  8. Tripathi AK (1980) J Am Ceram Soc 63:475

    Article  Google Scholar 

  9. Tripathi AK, Lal HB (1982) J Mat Sci 17:1595–1609

    Article  Google Scholar 

  10. Taguchi H (1995) J Sol Sta Chem 118:367–371

    Article  Google Scholar 

  11. Taguchi H (1996) J Sol Sta Chem 122:297–302

    Article  Google Scholar 

  12. Taguchi H (1997) J Sol Sta Chem 131:108–114

    Article  Google Scholar 

  13. Bartolomé F, Bartolomé J, Castro M, Melero JJ (2000) Phys Rev B 62:1058

    Article  Google Scholar 

  14. Du Y, Cheng ZX, Wang XL, Dou SX (2010) J Appl Phys 108:093914

    Article  Google Scholar 

  15. Siemons M, Leifert A, Simon U (2007) Adv Funct Mater 17:2189–2197

    Article  Google Scholar 

  16. Savchenko VF, Rubinchik IS (1979) Neorg Mater 15:122

    Google Scholar 

  17. Galdón A, Guillem MC (1993) Sol Sta Ion 63–65:66

    Article  Google Scholar 

  18. Devi PS (1993) J Mater Chem 3:373

    Article  Google Scholar 

  19. Kingsley JJ, Pederson LR (1993) Mater Lett 18:89

    Article  Google Scholar 

  20. Manoharan SS, Patil KC (1993) J Sol Sta Chem 102:267

    Article  Google Scholar 

  21. Mukherjee K, Majumder SB (2012) Sens Actuators B 162:229–236

    Article  Google Scholar 

  22. Purohit RD, Tyagi AK (2002) J Mater Chem 12:312–316

    Article  Google Scholar 

  23. Rodríguez–Carvazal J (1993) Phys B 192:55–69

    Article  Google Scholar 

  24. Bedekar V, Shukla R, Tyagi AK (2007) Nanotechnology 18:155706

    Article  Google Scholar 

  25. Tachiwaki T, Kunifusa Y, Yoshinaka M, Hirota K, Yamaguchi O (2001) Int J Inorg Mater 3:107

    Article  Google Scholar 

  26. Wang S, Lin B, Dong Y, Fang D, Ding H, Liu X, Meng G (2009) J Power Source 188:48

    Google Scholar 

  27. Young RA (1993) The Rietveld method. Oxford University Press, London

    Google Scholar 

  28. Glazer AM (1972) Acta Crystallogr B 28(1972):3384

    Article  Google Scholar 

  29. Woodward PM (1997) Acta Crystallogr B 53(1997):32

    Article  Google Scholar 

  30. Woodward PM (1997) Acta Crystallogr B 53(1997):44

    Article  Google Scholar 

  31. Saines PJ, Spencer JR, Kennedy BJ, Kubota Y, Minakatab C, Hanob H, Katoc K, Takatac M (2007) J Sol Stat Chem 180:3001

    Article  Google Scholar 

  32. Purwant A, Wan WN, Ogi T, Lenggoro IW, Tanabe E, Okuyamaa K (2008) J Allo Compd 463:350

    Article  Google Scholar 

  33. Iliev MN, Litvinchuk AP, Hadjiev VG, Wang YQ, Cmaidalka J, Meng RL, Sun YY, Kolev N, Abrashev MV (2006) Phys Rev B 74:214301

    Article  Google Scholar 

  34. Weber MC, Kreisel J, Thomas PA, Newton M, Sardar K, Walton RI (2012) Phys Rev B 85:054303

    Article  Google Scholar 

  35. Todorov ND, Abrashev MV, Ivanov VG, Tsutsumanova GG, Marinova V, Wang YQ, Iliev MN (2001) Phys Rev B 83:224303

    Article  Google Scholar 

  36. Tauc J, Grigorovici R, Vancu A (1966) Phts Stat Sol 15:627

    Article  Google Scholar 

  37. Cole KS, Cole RH (1941) J Chem Phys 9:342

    Google Scholar 

  38. Thongbai P, Tangwancharoen S, Yamwong T, Maensiri S (2008) J Phys Cond Mat 20:395227

    Article  Google Scholar 

  39. Idrees M, Nadeem M, Hassan MM (2010) J Phys D Appl Phys 43:155401

    Article  Google Scholar 

  40. Ata-Allah SS, Kaiser M (2004) Phys Stat Sol 201:3157

    Article  Google Scholar 

  41. Bunget I, Popescu M (1978) Physics of solid dielectrics. Editura Stiinsificâ Si Enciclopedicã, Bucharest

    Google Scholar 

  42. Nadeem M, Mushtaq A (2009) J Appl Phys 106:073713

    Article  Google Scholar 

  43. Iguchi E, Lee KJ (1993) J Mater Sci 28:5809

    Article  Google Scholar 

  44. Lee KJ, Iguchi E (1995) J Sol Stat Chem 114:242

    Article  Google Scholar 

  45. Jonscher AK (1996) Universal relaxation law. Chelsea Dielectrics Press, London

    Google Scholar 

  46. Chanda S, Saha S, Dutta A, Sinha TP (2013) Mat Res Bull 48:1688

    Article  Google Scholar 

  47. Saha S, Chanda S, Dutta A, Sinha TP (2013) Mat Res Bull 48:4917

    Article  Google Scholar 

Download references

Acknowledgments

Sujoy Saha acknowledges the financial support provided by the UGC New Delhi in the form of SRF. Alo Dutta thanks to Department of Science & Technology of India for providing the financial support through DST Fast Track Project under Grant No. SR/FTP/PS–032/2010. This work was financially supported by the Defense Research and Development Organization of Govt. of India, New Delhi. The authors acknowledge Dr. P. Singha Deo of S.N. Bose National Center for Basic Sciences, Kolkata, India for taking TEM micrographs. The authors acknowledge the academic discussions made with Prof. R. K. Mondal of the Department of Metallurgical Engineering, Indian Institute of Technology, Benaras Hindu University, Varanasi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujoy Saha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saha, S., Chanda, S., Dutta, A. et al. Dielectric relaxation and phonon modes of NdCrO3 nanostructure. J Sol-Gel Sci Technol 69, 553–563 (2014). https://doi.org/10.1007/s10971-013-3256-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3256-6

Keywords

Navigation