Skip to main content
Log in

Electrochemical corrosion and protection of low-temperature sintered silver nanoparticle paste in NH4Cl solution

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Corrosion behavior of low-temperature sintered silver nanoparticle (AgNP) paste in NH4Cl solution was investigated using electrochemical measurements (electrochemical impedance, potentiodynamic polarization, and localized electrochemical impedance spectroscopy) as well as surface characterizations (scanning electron microscope and X-ray photoelectron spectroscopy). The thiazolyl derivative was first applied as the corrosion inhibitor for the sintered AgNP paste. Results showed that the corrosion rate increased with the rising NH4Cl concentration while it decreased with the increase of solution alkaline. Due to the formation of a protective film through the coordination of N and S with Ag atoms, 2-mercaptobenzothiazole and sodium 2-mercaptobenzothiazole both showed excellent corrosion inhibition efficiencies (more than 97%) for the sintered AgNP paste in NH4Cl solutions. Relevant mechanisms have been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. B. Liao, H. Wang, S. Wan, W. Xiao, X. Guo, Electrochemical migration inhibition of tin by disodium hydrogen phosphate in water drop test. Metals 10, 942 (2020)

    Article  CAS  Google Scholar 

  2. X. Zhong, In situ study of the electrochemical migration of tin in the presence of H2S. J. Mater. Sci. 31, 8996–9005 (2020)

    CAS  Google Scholar 

  3. X. Zhong, S. Yu, L. Chen, J. Hu, Z. Zhang, Test methods for electrochemical migration: a review. J. Mater. Sci. 28, 2279–2289 (2017)

    CAS  Google Scholar 

  4. F. Li, V. Verdingovas, K. Dirscherl, G. Harsányi, R. Ambat, Influence of Ni, Bi, and Sb additives on the microstructure and the corrosion behavior of Sn–Ag–Cu solder alloys. J. Mater. Sci. 31, 15308–15321 (2020)

    CAS  Google Scholar 

  5. A. Gharaibeh, I. Felhsi, Z. Keresztes, G. Harsányi, B. Journal, Electrochemical corrosion of SAC alloys: a review. Metals 10, 1276 (2020)

    Article  CAS  Google Scholar 

  6. J. Kang, J. Tok, Z. Bao, Self-healing soft electronics. Nat. Electron. 2, 144–150 (2019)

    Article  Google Scholar 

  7. J. Perelaer, R. Jani, M. Grouchko, A. Kamyshny, S. Magdassi, U. Schubert, Plasma and microwave flash sintering of a tailored silver nanoparticle ink, yielding 60% bulk conductivity on cost-effective polymer foils. Adv. Mater. 24, 3993–3998 (2012)

    Article  CAS  Google Scholar 

  8. H. Ji, S. Wang, M. Li, J. Kim, Deep crystallization induced high thermal conductivity of low-temperature sintered Ag nanoparticles. Mater. Lett. 116, 219–222 (2014)

    Article  CAS  Google Scholar 

  9. J. Liu, H. Chen, H. Ji, M. Li, Highly conductive Cu–Cu joint formation by low-temperature sintering of formic acid-treated Cu nanoparticles. ACS. Appl. Mater. Interface 8, 33289–33298 (2016)

    Article  CAS  Google Scholar 

  10. R. Khazaka, L. Mendizabal, D. Henry, Review on joint shear strength of nano-silver paste and its long-term high temperature reliability. J. Electron. Mater. 43, 2459–2466 (2014)

    Article  CAS  Google Scholar 

  11. H. Gong, F. Zhao, Y. Yao, Effect of Corrosion on Mechanical and Biological Properties of Nano-Silver Joints, in 20th International Conference on Electronic Packaging Technology(ICEPT). IEEE. 2019.

  12. J. Li, C. Johnson, C. Buttay, W. Sabbah, S. Azzopardi, Bonding strength of multiple SiC die attachment prepared by sintering of Ag nanoparticles. J. Mater. Process. Tech. 215, 299–308 (2015)

    Article  CAS  Google Scholar 

  13. S. Wang, M. Li, H. Ji, C. Wang, Rapid pressureless low-temperature sintering of Ag nanoparticles for high-power density electronic packaging. Scripta Mater. 69, 789–792 (2013)

    Article  CAS  Google Scholar 

  14. B. Liao, H. Wang, W. Xiao, Y. Cai, X. Guo, Recent advances in method of suppressing dendrite formation of tin-based solder alloys. J. Mater. Sci. 31, 13001–13010 (2020)

    CAS  Google Scholar 

  15. K. Qi, X. Chen, G. Lu, Effect of interconnection area on shear strength of sintered joint with nano-silver paste. Solder. Surf. Mt. Tech. 20, 8–12 (2008)

    Article  CAS  Google Scholar 

  16. G. Chen, Z. Zhang, Y. Mei, X. Li, D. Yu, L. Wang, X. Chen, Applying viscoplastic constitutive models to predict ratcheting behavior of sintered nanosilver lap-shear joint. Mech. Mater. 72, 61–71 (2014)

    Article  Google Scholar 

  17. B. Liao, W. Jia, R. Sun, Z. Chen, X. Guo, Electrochemical migration behavior of Sn-3.0 Ag-05 Cu solder alloy under thin electrolyte layers. Surf. Rev. Lett. 26, 1850208 (2019)

    Article  CAS  Google Scholar 

  18. M. Watanabe, S. Shinozaki, E. Toyoda, K. Asakura, T. Ichino, N. Kuwaki, Y. Higashi, T. Tanaka, Corrosion products formed on silver after a one-month exposure to urban atmospheres. Corrosion 62, 243–250 (2006)

    Article  CAS  Google Scholar 

  19. L. Veleva, B. Valdez, G. Lopez, L. Vargas, J. Flores, Atmospheric corrosion of electro-electronics metals in urban desert simulated indoor environment. Corros. Eng. Sci. Technol. 43, 149–155 (2008)

    Article  CAS  Google Scholar 

  20. S. Singh, S. Elumalai, A. Pal, Rain pH estimation based on the particulate matter pollutants and wet deposition study. Sci. Tatal. Environ. 563, 293–301 (2016)

    Article  Google Scholar 

  21. S. Oh, Y. Kim, K. Jung, M. Park, M. Shon, H. Kwon, Galvanic corrosion behaviors of Cu connected to Au on a printed circuit board in ammonia solution. Met. Mater. Int. 24, 67–72 (2018)

    Article  CAS  Google Scholar 

  22. B. Liao, H. Cen, Z. Chen, X. Guo, Corrosion behavior of Sn-3.0Ag-0.5Cu alloy under chlorine-containing thin electrolyte layers. Corros. Sci. 143, 347–361 (2018)

    Article  CAS  Google Scholar 

  23. B. Liao, Z. Li, Y. Cai, X. Guo, Electrochemical migration behavior of Sn–3.0Ag–0.5Cu solder alloy under SO2 polluted thin electrolyte layers. J. Mater. Sci. 30, 5652–5661 (2019)

    CAS  Google Scholar 

  24. Q. Qu, C. Yan, L. Li, L. Zhang, G. Liu, C. Cao, Initial atmospheric corrosion of zinc in the presence of NH4Cl. Acta Metall. Sin. 17, 161–165 (2004)

    CAS  Google Scholar 

  25. E. Vernack, D. Costa, P. Tingaut, P. Marcus, DFT studies of 2-mercaptobenzothiazole and 2-mercaptobenzimidazole as corrosion inhibitors for copper. Corros. Sci. 174, 108840 (2020)

    Article  CAS  Google Scholar 

  26. X. Wu, F. Wiame, V. Maurice, P. Marcus, Moiré structure of the 2-mercaptobenzothiazole corrosion inhibitor adsorbed on a (111)-oriented copper surface. J. Phys. Chem. C 124, 15995–16001 (2020)

    Article  CAS  Google Scholar 

  27. S. Sharma, V. Maurice, L. Klein, P. Marcus, Local inhibition by 2-mercaptobenzothiazole of early stage intergranular corrosion of copper. J. Electrochem. Soc. 167, 161504 (2020)

    Article  CAS  Google Scholar 

  28. X. Wu, F. Wiame, V. Maurice, P. Marcus, Adsorption and thermal stability of 2-mercaptobenzothiazole corrosion inhibitor on metallic and pre-oxidized Cu(111) model surfaces. Appl. Surf. Sci. 508, 145132 (2020)

    Article  Google Scholar 

  29. M. Finšgar, D. Merl, An electrochemical, long-term immersion, and XPS study of 2-mercaptobenzothiazole as a copper corrosion inhibitor in chloride solution. Corros. Sci. 83, 164–175 (2014)

    Article  Google Scholar 

  30. P. Spurgeon, D. Liu, H. Walen, J. Oh, H. Yang, Y. Kim, P. Thiel, Characteristics of sulfur atoms adsorbed on Ag(100), Ag(110), and Ag(111) as probed with scanning tunneling microscopy: experiment and theory. Phys. Chem. Chem Phys. 21, 10540–10551 (2019)

    Article  CAS  Google Scholar 

  31. S. Russell, M. Shen, D. Liu, P. Thiel, Adsorption of sulfur on Ag(100). Surf. Sci. 605, 520–527 (2011)

    Article  CAS  Google Scholar 

  32. F. Yang, B. Hu, Y. Peng, C. Hang, H. Chen, C. Lee, J. Wei, M. Li, Ag Microflake-reinforced nano-Ag paste with high mechanical reliability for high-temperature applications. J. Mater. Sci. 30, 5526–5535 (2019)

    CAS  Google Scholar 

  33. G. Liu, Y. Zhang, M. Wu, R. Huang, B. Materials, Study of depassivation of carbon steel in simulated concrete pore solution using different equivalent circuits. Constr. Build. Mater. 157, 357–362 (2017)

    Article  CAS  Google Scholar 

  34. H. Kim, Corrosion process of silver in environments containing 0.1 ppm H2S and 1.2 ppm NO2. Mater. Corros. 54, 243–250 (2015)

    Article  Google Scholar 

  35. C. Wagner, D. Zatko, R. Raymond, Use of the oxygen KLL auger lines in identification of surface chemical states by electron spectroscopy for chemical analysis. Anal. Chem. 52, 1445–1451 (1980)

    Article  CAS  Google Scholar 

  36. J. Elechiguerra, L. Larios-Lopez, C. Liu, D. Garcia-Gutierrez, M. Yacaman, Corrosion at the nanoscale: the case of silver nanowires and nanoparticles. Chem. Mater. 17, 6042–6052 (2005)

    Article  CAS  Google Scholar 

  37. M. Zharnikov, M. Grunze, Spectroscopic characterization of thiol-derived self-assembling monolayers. J. Phys. 13, 11333 (2001)

    CAS  Google Scholar 

  38. L. Kazansky, I. Selyaninov, Y. Kuznetsov, Adsorption of 2-mercaptobenzothiazole on copper surface from phosphate solutions. Appl. Surf. Sci. 258, 6807–6813 (2012)

    Article  CAS  Google Scholar 

  39. Z. Zhang, Q. Wang, X. Wang, L. Gao, The influence of crystal faces on corrosion behavior of copper surface: first-principle and experiment study. Appl. Surf. Sci. 396, 746–753 (2017)

    Article  CAS  Google Scholar 

  40. G. Hope, K. Watling, R. Woods, An electrochemical investigation of the suppression of silver dissolution in aqueous cyanide by 2-mercaptobenzothiazole. J. Appl. Electrochem. 31, 703–709 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work supported by the National Natural Science Foundation of China (Grant nos. 52001080, 51971067), Platform Research Capability Enhancement Project of Guangzhou University (Grant no. 69-620939), Guangzhou University’s 2020 Training Program for Talent (Grant no. 69-62091109), Provincial Innovation Training Program for College Students of Guangzhou University (Grant no. S202011078017), and Science and Technology Research Project of Guangzhou (Grant no. 202002010007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bokai Liao or Xingpeng Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Quan, X., Zeng, Q. et al. Electrochemical corrosion and protection of low-temperature sintered silver nanoparticle paste in NH4Cl solution. J Mater Sci: Mater Electron 32, 13748–13760 (2021). https://doi.org/10.1007/s10854-021-05952-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05952-0

Navigation