Skip to main content
Log in

Luminescence Studies of rare-earth Ce3+ and Dy3+ doped SrAl2O4 aluminate phosphors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The rare-earth doped Sr0.96Ce0.04-xDyxAl2O4 [x = 0.03, 0.02, 0.01] aluminate phosphors synthesized by the high temperature solid-state reaction route are reported in this work. The phosphors under investigation were characterized for the structural and luminescence properties. The structural studies were carried out exploiting X-ray diffraction, Raman scattering technique, and the Fourier transform infrared spectroscopy. The optical study of the phosphors under observation comprises UV–Vis, thermoluminescence, and photoluminescence studies. The XRD results of these materials on analysis revealed that the samples exhibit double phase where dominating phase is that of desired Sr0.96Ce0.04-xDyxAl2O4 [x = 0.03, 0.02, 0.01] phosphors with trace of secondary phase arising from unreacted SrCO3. The Sr0.96Ce0.04-xDyxAl2O4 [x = 0.03, 0.02, 0.01] aluminates have acquired the monoclinic phase (P1 21 n) and SrCO3 was found to have crystalized into the orthorhombic (Pmcn) phase. The characteristic Raman band at around ≈ 460 cm−1 for Sr0.96Ce0.01Dy0.03Al2O4 phosphor conveys the monoclinic structure in the sample. The UV–Vis spectral studies revealed the optical bandgap around 3 eV. Thermoluminescence study inferred the optimum intensity for 25-min exposure to the excitation radiation with higher intensity for x = 0.02 (Dy/Ce) concentration. The photoluminescence studies revealed the emission in the blue region for x = 0.03 and 0.02 confirmed from the CIE coordinate values and near red emission in the higher concentrated Ce3+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.K. Sharma, S.S. Pitale, M.M. Malik, M.S. Qureshi, R.N. Dubey, J. Alloys Compd. 482, 468 (2009)

    Article  CAS  Google Scholar 

  2. J. Holsa, H. Jungner, M. Lastusaari, J. Niittykoski, J. Alloys Compd. 326, 323 (2001)

    Article  Google Scholar 

  3. A. Nag, T.R.N. Kutty, J. Alloys Compd. 354, 221 (2003)

    Article  CAS  Google Scholar 

  4. Y.H. Lin, Z.T. Zhang, F. Zhang, Z.L. Tang, Q.M. Chen, Mater. Chem. Phys. 65, 103 (2000)

    Article  CAS  Google Scholar 

  5. M.D. Tang, Luminecsence and Illumination. 2, 8–13 (2003)

    Google Scholar 

  6. M. Kowatari, D. Koyama, Y. Satoh et al., Nucl. Instrum. Methods Phys. Res. Sect. A 480, 431–439 (2002)

    Article  CAS  Google Scholar 

  7. L. Jiang, C.K. Chang, D.L. Mao, Inorg. Mater. 19, 268–274 (2004)

    CAS  Google Scholar 

  8. G. Blasse, B. Grabmaier, Luminescent Materials (Springer, Berlin, 1994).

    Book  Google Scholar 

  9. J.G. Solé, L.E. Bausá, D. Jaque, An Introduction to the Optical Spectroscopy of Inorganic Solids (Wiley, Hoboken, 2005). https://doi.org/10.1002/0470016043

    Book  Google Scholar 

  10. M. Fox, Optical Properties of Solids (Oxford University Press, Oxford, 2010).

    Google Scholar 

  11. L.C.V. Rodrigues, H.F. Brito, J. Holsa, M. Lastusaari, Opt. Mater. Express 2, 382–390 (2012)

    Article  CAS  Google Scholar 

  12. W. Zeng, Y. Wang, S. Han, W. Chen, G. Li, Y. Wen, J. Mater. Chem. C 1, 3004–3011 (2013)

    Article  CAS  Google Scholar 

  13. W. Chenand, J. Zhang, J. Nanosci. Nanotechnol. 6, 1159–1166 (2006)

    Article  Google Scholar 

  14. A.V. Medvedoovici, V. David, Encyclopedia of Analytical Sciences, 2nd edn. (University of Bucharest, Bucharest, 2005), pp. 321–334

    Book  Google Scholar 

  15. JCPDS File Number 34-0379, JCPDS International Center for Diffraction Data

  16. I.P. Sahu, D.P. Bisen, N. Brahme, R.K. Tamrakar, R. Shrivastava, J Mater Sci. Mater. Electron. 26, 8824–8839 (2015)

    Article  CAS  Google Scholar 

  17. P. Escribano, M. Marchal, M.L. Sanjuán, P. Alonso-Gutiérrez, B. Julián, E. Cordoncillo, J. Solid State Chem. 178, 1978–1987 (2005)

    Article  CAS  Google Scholar 

  18. S. Hamdan, R. Hussin, M.A. Salim, M.S. Husin, D.N.F. Abdul-Halim, M.S. Abdullah, Mater. Sci. Technol. 27, 232–234 (2011)

    Article  Google Scholar 

  19. K. Liang, Y. Qi, C. Lu, J. Raman Spectrosc. 40, 2088–2091 (2009)

    Article  CAS  Google Scholar 

  20. M. Saleem, S. Tiwari, M. Soni, N. Bajpai, A. Mishra, Int. J. Mod. Phys. B. 33, 2050033 (2020). https://doi.org/10.1142/S0217979220500332

    Article  CAS  Google Scholar 

  21. X. Duan, L. Yi, X. Zhang, S. Huang, J. Nanomater. (2015). https://doi.org/10.1155/2015/298692

    Article  Google Scholar 

  22. J. Tauc, Optical Properties of Solid’s F Abeles (Ed.) (North Holland, Amsterdem, 1970).

    Google Scholar 

  23. B.G. Park, Catalysts 8, 227 (2018)

    Article  Google Scholar 

  24. M. Ayvacık, A. Ege, S. Yerci, N. Can, J. Lumin. 131, 2432–2439 (2011)

    Article  Google Scholar 

  25. M. Mashangva, M.N. Singh, T.B. Singh, Indian J. Pure Appl. Phys. 49, 583–589 (2011)

    Google Scholar 

  26. H. Zhang, H. Yamada, N. Terasaki, C.N. Xu, Appl. Phys. Lett. 91, 081905 (2007)

    Article  Google Scholar 

  27. D.S. Kshatri, A. Khare, Opt. Spectrosc. 117, 769–783 (2014)

    Article  CAS  Google Scholar 

  28. I.C. Chen, T.M. Chen, J. Mater. Res. 16, 644 (2001)

    Article  CAS  Google Scholar 

  29. J. Kuang, Y. Liu, J. Zhang, J. Solid State Chem. 179, 266–269 (2006)

    Article  CAS  Google Scholar 

  30. G.S. Rama Raju, J.Y. Park, H.C. Jung, B.K. Moon, J.H. Jeong, J.H. Kim, Curr. Appl. Phys. 9, 92–97 (2009)

    Article  Google Scholar 

  31. A.H. Wako, F.B. Dejene, H.C. Swart, Phys. B 480, 116 (2016)

    Article  CAS  Google Scholar 

  32. Y. Chen, X. Cheng, M. Liu, Z. Qi, C. Shi, J. Lumin. 129, 531–535 (2009)

    Article  CAS  Google Scholar 

  33. S. Singh, R.K. Kuraria, S.R. Kuraria, AIP Conf. Proc. 020014, 1–5 (2014). https://doi.org/10.1063/1.5100382

    Article  CAS  Google Scholar 

  34. T. Ishihara, K. Tanaka, K. Fujita, K. Hirao, N. Soga, Solid State Commun. 107, 763 (1998)

    Article  CAS  Google Scholar 

  35. L. Pidol, B. Viana, A. Kahn-Harari, A. Galtayries, A. Bessiere, P. Dorenbos, J. Appl. Phys. 95, 7731 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the UGC-DAE CSR Indore as an institute. The authors extend special thanks to Dr. M. Gupta, Dr. V. Sathe, and Dr. U. Deshpande for X-ray diffraction, Raman characterization, and UV-Vis/FTIR spectral measurements, respectively. It is worth to mention Dr. D. P. Bisen for TL characterization, SOS of physics, Pt. Ravishankar Shukla University, Raipur (CG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Saleem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neema, R., Saleem, M., Sharma, P.K. et al. Luminescence Studies of rare-earth Ce3+ and Dy3+ doped SrAl2O4 aluminate phosphors. J Mater Sci: Mater Electron 32, 12318–12329 (2021). https://doi.org/10.1007/s10854-021-05862-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05862-1

Navigation