Skip to main content

Advertisement

Log in

Energy storage and piezoelectric properties of lead‐free SrTiO3-modified 0.965Bi0.5Na0.5TiO3–0.035BaTiO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This manuscript reports the synthesis and piezoelectric properties of strontium titanate, SrTiO3-modified bismuth sodium titanate-barium titanate, 0.965Bi0.5Na0.5TiO3–0.035BaTiO3, (BNBT-xST, x = 0.00−0.30) ceramics produced by facile low temperature sol–gel and hydrothermal methods. Close inspection of the X-ray diffraction profile through Rietveld refinement indicates ST modification in BNBT leads to a phase transition from the dominant rhombohedral phase to a single tetragonal phase. This structural transition leads to enhancement of electromechanical and energy storage properties. A large dynamic piezoelectric coefficient (d*33 = 350 pC/V) was observed for BNBT-0.1ST sample. High energy storage density (Wrec = 0.37) and large energy storage efficiency (η = 75%) were observed at 75 °C for the BNBT-0.3ST sample. The energy storage response of the tunable ferrorelectric ceramics suggests their possible use for high-performance dielectric capacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Flow chart 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data and analysis available on request.

References

  1. C.K. Jeong, J. Lee, S. Han, J. Ryu, G.-T. Hwang, D.Y. Park, J.H. Park, S.S. Lee, M. Byun, S.H. Ko, K.J. Lee, A hyper-stretchable elastic-composite energy harvester. Adv. Mater. 27, 2866–2875 (2015). https://doi.org/10.1002/adma.201500367

    Article  CAS  Google Scholar 

  2. S. Gupta, D. Maurya, Y. Yan, S. Priya, Development of KNN-based piezoelectric materials, in Lead-Free Piezoelectrics. ed. by S. Priya, S. Nahm (Springer, New York, 2012), pp. 89–119

    Chapter  Google Scholar 

  3. Y. Slimani, B. Unal, E. Hannachi, A. Selmi, M.A. Almessiere, M. Nawaz, A. Baykal, I. Ercan, M. Yildiz, Frequency and dc bias voltage dependent dielectric properties and electrical conductivity of BaTiO3SrTiO3/(SiO2)x nanocomposites. Ceram. Int. 45, 11989–12000 (2019). https://doi.org/10.1016/j.ceramint.2019.03.092

    Article  CAS  Google Scholar 

  4. Y. Gong, X. He, C. Chen, Z. Yi, Large electric field-induced strain in ternary Bi0.5Na0.5TiO3-BaTiO3-Sr2MnSbO6 lead-free ceramics. Ceram. Int. 45, 7173–7179 (2019). https://doi.org/10.1016/j.ceramint.2018.12.224

    Article  CAS  Google Scholar 

  5. P. Jaita, S. Manotham, G. Rujijanagul, Influence of Al2O3 nanoparticle doping on depolarization temperature, and electrical and energy harvesting properties of lead-free 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3 ceramics. RSC Adv. 10, 32078–32087 (2020). https://doi.org/10.1039/D0RA04866F

    Article  CAS  Google Scholar 

  6. W. Bai, L. Wang, X. Zhao, P. Zheng, F. Wen, L. Li, J. Zhai, BaTiO3 nanowires-induced phase transition and thermally stable strain in (Bi0.5Na0.5)TiO3 piezoelectric ceramics. Ceram. Int. 45, 18623–18631 (2019). https://doi.org/10.1016/j.ceramint.2019.06.086

    Article  CAS  Google Scholar 

  7. M.H.A. Mhareb, Y. Slimani, Y.S. Alajerami, M.I. Sayyed, E. Lacomme, M.A. Almessiere, Structural and radiation shielding properties of BaTiO3 ceramic with different concentrations of Bismuth and Ytterbium. Ceram. Int. 46, 28877–28886 (2020). https://doi.org/10.1016/j.ceramint.2020.08.055

    Article  CAS  Google Scholar 

  8. A. Zaman, A. Hussain, R.A. Malik, A. Maqbool, S. Nahm, M.-H. Kim, Dielectric and electromechanical properties of LiNbO3-modified (BiNa)TiO3–(BaCa)TiO3lead-free piezoceramics. J. Phys. D Appl. Phys. 49, 175301 (2016). https://doi.org/10.1088/0022-3727/49/17/175301

    Article  Google Scholar 

  9. W. Jo, J.E. Daniels, J.L. Jones, X. Tan, P.A. Thomas, D. Damjanovic, J. Rödel, Evolving morphotropic phase boundary in lead-free (Bi1/2Na1/2)TiO3–BaTiO3 piezoceramics. J. Appl. Phys. 109, 014110 (2011). https://doi.org/10.1063/1.3530737

    Article  CAS  Google Scholar 

  10. A. Hussain, A. Maqbool, R.A. Malik, I. Qazi, T.-K. Song, W.-J. Kim, M.-H. Kim, Electromechanical properties of lead-free Nb-Doped 0.95Bi0.5Na0.5TiO3-0.05BaZrO3 piezoelectric ceramics. Phys. Status Solidi A 215, 1700942 (2018). https://doi.org/10.1002/pssa.201700942

    Article  CAS  Google Scholar 

  11. X. Liu, S. Xue, F. Wang, J. Zhai, B. Shen, Grain size dependent physical properties in lead-free multifunctional piezoceramics: a case study of NBT-xST system. Acta Mater. 164, 12–24 (2019). https://doi.org/10.1016/j.actamat.2018.10.029

    Article  CAS  Google Scholar 

  12. R.A. Malik, A. Hussain, A. Zaman, A. Maqbool, J.U. Rahman, T.K. Song, W.-J. Kim, M.-H. Kim, Correction: Structure–property relationship in lead-free A-and B-site co-doped Bi0.5(Na0.84K0.16)0.5TiO3–SrTiO3 incipient piezoceramics. RSC Adv. 5, 103315–103315 (2015). https://doi.org/10.1039/C5RA90107C

    Article  CAS  Google Scholar 

  13. R.A. Malik, A. Hussain, A. Maqbool, A. Zaman, C.-W. Ahn, J.U. Rahman, T.-K. Song, W.-J. Kim, M.-H. Kim, Temperature-insensitive high strain in lead‐free Bi0.5(Na0.84K0.16)0.5TiO3–0.04SrTiO3 ceramics for actuator applications. J. Am. Ceram. Soc. 98, 3842–3848 (2015). https://doi.org/10.1111/jace.13722

    Article  CAS  Google Scholar 

  14. R.A. Malik, A. Hussain, A. Maqbool, A. Zaman, T.K. Song, W.-J. Kim, M.-H. Kim, Giant strain, thermally-stable high energy storage properties and structural evolution of Bi-based lead-free piezoceramics. J. Alloys Comp. 682, 302–310 (2016). https://doi.org/10.1016/j.jallcom.2016.04.297

    Article  CAS  Google Scholar 

  15. Y. Hiruma, Y. Imai, Y. Watanabe, H. Nagata, T. Takenaka, Large electrostrain near the phase transition temperature of (Bi0.5Na0.5)TiO3–SrTiO3 ferroelectric ceramics. Appl. Phys. Lett. 92, 262904 (2008). https://doi.org/10.1063/1.2955533

    Article  CAS  Google Scholar 

  16. X. Liu, J. Shi, F. Zhu, H. Du, T. Li, X. Liu, H. Lu, Ultrahigh energy density and improved discharged efficiency in bismuth sodium titanate based relaxor ferroelectrics with A-site vacancy. J. Materiomics. 4, 202–207 (2018). https://doi.org/10.1016/j.jmat.2018.05.006

    Article  Google Scholar 

  17. J. Yin, G. Liu, X. Lv, Y. Zhang, C. Zhao, B. Wu, X. Zhang, J. Wu, Superior and anti-fatigue electro-strain in Bi0.5Na0.5TiO3-based polycrystalline relaxor ferroelectrics. J. Mater. Chem. A. 6, 9823–9832 (2019). https://doi.org/10.1039/C8TA00474A

    Article  Google Scholar 

  18. X. Zhu, Y. Jiang, J. Zhu, Comparative study of solid-state reaction and sol-gel process for synthesis of Zr-doped Li0.5La0.5TiO3 solid electrolytes. Ionics. 22, 2151–2156 (2016). https://doi.org/10.1007/s11581-016-1744-8

    Article  CAS  Google Scholar 

  19. Y.-D. Hou, L. Hou, T.-T. Zhang, M.-K. Zhu, H. Wang, H. Yan, (Na0.8K0.2)0.5Bi0.5TiO3 nanowires: low-temperature sol–gel–hydrothermal synthesis and densification. J. Am. Ceram. Soc. 90, 1738–1743 (2007). https://doi.org/10.1111/j.1551-2916.2007.01657.x

    Article  CAS  Google Scholar 

  20. A. Banerjee, S. Bose, Free-standing lead zirconate titanate nanoparticles: low-temperature synthesis and densification. Chem. Mater. 16, 5610–5615 (2004). https://doi.org/10.1021/cm0490423

    Article  CAS  Google Scholar 

  21. M. Cernea, E. Andronescu, R. Radu, F. Fochi, C. Galassi, Sol–gel synthesis and characterization of BaTiO3-doped (Bi0.5Na0.5)TiO3 piezoelectric ceramics. J. Alloys Comp. 490, 690–694 (2010). https://doi.org/10.1016/j.jallcom.2009.10.140

    Article  CAS  Google Scholar 

  22. Y. Hou, M. Zhu, L. Hou, J. Liu, J. Tang, H. Wang, H. Yan, Synthesis and characterization of lead-free K0.5Bi0.5TiO3 ferroelectrics by sol–gel technique. J. Cryst. Growth 273, 500–503 (2005). https://doi.org/10.1016/j.jcrysgro.2004.09.055

    Article  CAS  Google Scholar 

  23. C.Y. Kim, T. Sekino, K. Niihara, Synthesis of bismuth sodium titanate nanosized powders by solution/sol–gel process. J. Am. Ceram. Soc. 86, 1464–1467 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03497.x

    Article  CAS  Google Scholar 

  24. R.M. German, Sintering Theory and Practice (Wiley-Interscience, New York, 1996).

    Google Scholar 

  25. Y. Slimani, M.A. Almessiere, S.E. Shirsath, E. Hannachi, G. Yasin, A. Baykal, B. Ozçelik, I. Ercan, Investigation of structural, morphological, optical, magnetic and dielectric properties of (1-x)BaTiO3/xSr0.92Ca0.04Mg0.04Fe12O19 composites. J. Mag. Magnet. Mater. 510, 166933 (2020). https://doi.org/10.1016/j.jmmm.2020.166933

    Article  CAS  Google Scholar 

  26. K. Wang, A. Hussain, W. Jo, J. Rödel, Temperature-dependent properties of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–SrTiO3 lead-free piezoceramics. J. Am. Ceram. Soc. 95, 2241–2247 (2012). https://doi.org/10.1111/j.1551-2916.2012.05162.x

    Article  CAS  Google Scholar 

  27. K. Sakata, Y. Masuda, Ferroelectric and antiferroelectric properties of (Na 0.5Bi 0.5)TiO3-SrTiO3 solid solution ceramics. Ferroelectrics 7, 347–349 (1974). https://doi.org/10.1080/00150197408238042

    Article  CAS  Google Scholar 

  28. H. Chen, J. Shi, X. Chen, C. Sun, F. Pang, X. Dong, H. Zhang, H. Zhou, Excellent energy storage properties and stability of NaNbO3–Bi(Mg0.5Ta0.5)O3 ceramics by introducing (Bi0.5Na0.5)0.7Sr0.3TiO3. J. Mater. Chem. A. 9, 4789–4799 (2021). https://doi.org/10.1039/D0TA11022A

    Article  CAS  Google Scholar 

  29. Z. Li, B. Hou, Y. Xu, D. Wu, Y. Sun, W. Hu, F. Deng, Comparative study of sol–gel-hydrothermal and sol–gel synthesis of titania–silica composite nanoparticles. J. Solid State Chem. 178, 1395–1405 (2005). https://doi.org/10.1016/j.jssc.2004.12.034

    Article  CAS  Google Scholar 

  30. A. Maqbool, A. Hussain, R.A. Malik, J.U. Rahman, A. Zaman, T.K. Song, W.-J. Kim, M.-H. Kim, Evolution of phase structure and giant strain at low driving fields in Bi-based lead-free incipient piezoelectrics. Mater. Sci. Eng. B. 199, 105–112 (2015). https://doi.org/10.1016/j.mseb.2015.05.009

    Article  CAS  Google Scholar 

  31. Y. Slimani, B. Unal, M.A. Almessiere, E. Hannachi, G. Yasin, A. Baykal, I. Ercan, Role of WO3 nanoparticles in electrical and dielectric properties of BaTiO3–SrTiO3 ceramics. J. Mater. Sci. Mater Electron. 31, 7786–7797 (2020). https://doi.org/10.1007/s10854-020-03317-7

    Article  CAS  Google Scholar 

  32. I. Hussain, M.S. Anwar, J.W. Kim, K.C. Chung, B.H. Koo, Influence of La addition on the structural, magnetic and magnetocaloric properties in Sr2–xLaxFeMoO6 (0 ≤ x ≤ 0.3) double perovskite. Ceram. Int. 42, 13098–13103 (2016). https://doi.org/10.1016/j.ceramint.2016.05.094

    Article  CAS  Google Scholar 

  33. N.F. Muhamad, R.A.M. Osman, M.S. Idris, M.N.M. Yasin, Physical and electrical properties of SrTiO3 and SrZrO3. EPJ Web Conf. 162, 01052 (2017). https://doi.org/10.1051/epjconf/201716201052

    Article  CAS  Google Scholar 

  34. E. Dul’kin, E. Mojaev, M. Roth, S. Greicius, T. Granzow, Detection of phase transitions in sodium bismuth titanate–barium titanate single crystals by acoustic emission. Appl. Phys. Lett. 92, 012904 (2008). https://doi.org/10.1063/1.2828698

    Article  CAS  Google Scholar 

  35. M. Habib, M.H. Lee, D.J. Kim, H.I. Choi, M.-H. Kim, W.-J. Kim, T.K. Song, K.S. Choi, Enhanced piezoelectric performance of donor La3+-doped BiFeO3–BaTiO3 lead-free piezoceramics. Ceram. Int. 46, 7074–7080 (2020). https://doi.org/10.1016/j.ceramint.2019.11.199

    Article  CAS  Google Scholar 

  36. M. Habib, M.H. Lee, D.J. Kim, F. Akram, H.I. Choi, M.-H. Kim, W.-J. Kim, T.K. Song, Phase diagram for Bi-site La-doped BiFeO3BaTiO3 lead-free piezoelectric ceramics. J. Materiomics. 7, 40–50 (2021). https://doi.org/10.1016/j.jmat.2020.07.001

    Article  Google Scholar 

  37. D. Wang, Z. Fan, D. Zhou, A. Khesro, S. Murakami, A. Feteira, Q. Zhao, X. Tan, I.M. Reaney, Bismuth ferrite-based lead-free ceramics and multilayers with high recoverable energy density. J. Mater. Chem. A. 6, 4133–4144 (2018). https://doi.org/10.1039/C7TA09857J

    Article  CAS  Google Scholar 

  38. J. Hao, Z. Xu, R. Chu, W. Li, P. Fu, J. Du, G. Li, Structure evolution and electrostrictive properties in (Bi0.5Na0.5)0.94Ba0.06TiO3–M2O5 (M = Nb, Ta, Sb) lead-free piezoceramics. J. Eur. Ceram. Soc. 36, 4003–4014 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.06.020

    Article  CAS  Google Scholar 

  39. M. Habib, M.H. Lee, D.J. Kim, H.I. Choi, M.-H. Kim, W.-J. Kim, T.K. Song, Phase evolution and origin of the high piezoelectric properties in lead-free BiFeO3–BaTiO3 ceramics. Ceram. Int. 46, 22239–22252 (2020). https://doi.org/10.1016/j.ceramint.2020.05.301

    Article  CAS  Google Scholar 

  40. M. Habib, M.H. Lee, F. Akram, M.-H. Kim, W.-J. Kim, T.K. Song, Temperature-insensitive piezoelectric properties of lead-free BiFeO3–BaTiO3 ceramics with high Curie temperature. J. Alloys Comp. 851, 156788 (2021). https://doi.org/10.1016/j.jallcom.2020.156788

    Article  CAS  Google Scholar 

  41. S. Smail, M. Benyoussef, K. Taïbi, N. Bensemma, B. Manoun, M.E. Marssi, A. Lahmar, Structural, dielectric, electrocaloric and energy storage properties of lead free Ba0.975La0.017(ZrxTi0.95-x)Sn0.05O3 (x = 0.05; 0.20) ceramics. Mater. Chem. Phys. 252, 123462 (2020). https://doi.org/10.1016/j.matchemphys.2020.123462

    Article  CAS  Google Scholar 

  42. J. Shi, H. Fan, X. Liu, A.J. Bell, Large Electrostrictive Strain in (Bi0.5Na0.5)TiO3–BaTiO3–(Sr0.7Bi0.2)TiO3 Solid Solutions. J. Am. Ceram. Soc. 97, 848–853 (2014). https://doi.org/10.1111/jace.12712

    Article  CAS  Google Scholar 

  43. Y. Slimani, A. Selmi, E. Hannachi, M.A. Almessiere, M. Mumtaz, A. Baykal, I. Ercan, Study of tungsten oxide effect on the performance of BaTiO3 ceramics. J. Mater. Sci. Mater Electron. 30, 13509–13518 (2019). https://doi.org/10.1007/s10854-019-01718-x

    Article  CAS  Google Scholar 

  44. M. Habib, M. Munir, S.A. Khan, T.K. Song, M.-H. Kim, M.J. Iqbal, I. Qazi, A. Hussain, Evaluation of high strain response in lead-free BNBTFS-xNb ceramics by structure and ferroelectric characterizations. J. Phys. Chem. Solids 138, 109230 (2020). https://doi.org/10.1016/j.jpcs.2019.109230

    Article  CAS  Google Scholar 

  45. M. Munir, M. Habib, S.A. Khan, A. Hussain, I. Qazi, B. Choi, Y. Son, J.-H. Malik, R.A. Bae, Effect of the processing temperature on the electrical properties of lead-free 0.965Bi0.5Na0.5TiO3–0.035BaTiO3 piezoelectric ceramics synthesized by sol–gel method. J. Sol–Gel. Sci. Technol. 90, 643–652 (2019). https://doi.org/10.1007/s10971-018-04913-0

    Article  CAS  Google Scholar 

  46. K.R. Kandula, K. Banerjee, S.S.K. Raavi, S. Asthana, Enhanced electrocaloric effect and energy storage density of Nd-substituted 0.92NBT-0.08BT lead free ceramic. Phys. Status Solidi A 215, 1700915 (2018). https://doi.org/10.1002/pssa.201700915

    Article  CAS  Google Scholar 

  47. J. Hao, W. Li, J. Zhai, H. Chen, Progress in high-strain perovskite piezoelectric ceramics. Mater. Sci. Eng. Rep. 135, 1–57 (2019). https://doi.org/10.1016/j.mser.2018.08.001

    Article  Google Scholar 

  48. K.-T. Lee, J.-S. Park, J.-H. Cho, Y.-H. Jeong, J.-H. Paik, J.S. Yun, Phase transition and electrical characteristics of Bi0.5(Na0.78K0.22)0.5TiO3–BiFeO3 lead-free piezoelectric ceramics. Ceram. Int. 41, 10298–10303 (2015). https://doi.org/10.1016/j.ceramint.2015.04.063

    Article  CAS  Google Scholar 

  49. G. Dong, H. Fan, J. Shi, M. Li, Composition-and temperature‐dependent large strain in (1 – x)(0.8Bi0.5Na0.5TiO3–0.2Bi0.5K0.5TiO3)–xNaNbO3 ceramics. J. Am. Ceram. Soc. 98, 1150–1155 (2015). https://doi.org/10.1111/jace.13407

    Article  CAS  Google Scholar 

  50. D. Maurya, Y. Zhou, Y. Yan, S. Priya, Synthesis mechanism of grain-oriented lead-free piezoelectric Na0.5Bi0.5TiO3–BaTiO3 ceramics with giant piezoelectric response. J. Mater. Chem. C. 1, 2102–2111 (2013). https://doi.org/10.1039/c3tc00619k

    Article  CAS  Google Scholar 

  51. J. Hao, W. Bai, W. Li, B. Shen, J. Zhai, Phase transitions, relaxor behavior, and large strain response in LiNbO3-modified Bi0.5(Na0.80K0.20)0.5TiO3 lead-free piezoceramics. J. Appl. Phys. 114, 044103 (2013). https://doi.org/10.1063/1.4816047

    Article  CAS  Google Scholar 

  52. R. Cheng, Z. Xu, R. Chu, J. Hao, J. Du, G. Li, Electric field-induced ultrahigh strain and large piezoelectric effect in Bi1/2Na1/2TiO3 -based lead-free piezoceramics. J. Eur. Ceram. Soc. 36, 489–496 (2016). https://doi.org/10.1016/j.jeurceramsoc.2015.09.043

    Article  CAS  Google Scholar 

  53. S.-T. Zhang, A.B. Kounga, E. Aulbach, T. Granzow, W. Jo, H.-J. Kleebe, J. Rödel, Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3. I. Structure and room temperature properties. J. Appl. Phys. 103, 034107 (2008). https://doi.org/10.1063/1.2838472

    Article  CAS  Google Scholar 

  54. X. Liu, X. Tan, Giant strains in non-textured (Bi1/2Na1/2)TiO3‐based lead‐free ceramics. Adv. Mater. 28, 574–578 (2016). https://doi.org/10.1002/adma.201503768

    Article  CAS  Google Scholar 

  55. C. Ma, X. Tan, E. Dul’kin, M. Roth, Domain structure-dielectric property relationship in lead-free (1 – x)(Bi1/2Na1/2)TiO3–xBaTiO3 ceramics. J. Appl. Phys. 108, 104105 (2010). https://doi.org/10.1063/1.3514093

    Article  CAS  Google Scholar 

  56. Y. Slimani, A. Selmi, E. Hannachi, M.A. Almessiere, A. Baykal, I. Ercan, Impact of ZnO addition on structural, morphological, optical, dielectric and electrical performances of BaTiO3 ceramics. J. Mater. Sci. Mater Electron. 30, 9520–9530 (2019). https://doi.org/10.1007/s10854-019-01284-2

    Article  CAS  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ayse Turak or Ali Hussain.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 998 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munir, M., Habib, M., Khan, S.A. et al. Energy storage and piezoelectric properties of lead‐free SrTiO3-modified 0.965Bi0.5Na0.5TiO3–0.035BaTiO3 ceramics. J Mater Sci: Mater Electron 32, 10712–10725 (2021). https://doi.org/10.1007/s10854-021-05728-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05728-6

Navigation