Skip to main content
Log in

Fabrication of quantum dot-sensitized solar cells with multilayer TiO2/PbS(X)/CdS/CdSe/ZnS/SiO2 photoanode and optimization of the PbS nanocrystalline layer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, two multilayer photoanode structures of TiO2/PbS(X)/CdS/ZnS/SiO2 and TiO2/PbS(X)/CdS/CdSe/ZnS/SiO2 were fabricated and applied in quantum dot-sensitized solar cells (QDSCs). Then, the effect of PbS QDs layer on the photovoltaic performance of corresponding cells was investigated. The sensitization was carried out by PbS and CdS QDs layers deposited on TiO2 scaffold through successive ionic layer adsorption and reaction (SILAR) method. The CdSe QDs film was also formed by a fast, modified chemical bath deposition (CBD) approach. Two passivating ZnS and SiO2 layers were finally deposited by SILAR and CBD methods, respectively. It was shown that the reference cell with TiO2/CdS/ZnS/SiO2 photoanode demonstrated a power conversion efficiency (PCE) of 3.0%. This efficiency was increased to 4.0% for the QDSC with TiO2/PbS(2)/CdS/ZnS/SiO2 photoelectrode. This was due to the co-absorption of incident light by low-bandgap PbS nanocrystalline film and also the CdS QDs layer and well transport of the charge carriers. For the CdSe included QDSCs, the PbS-free reference cell represented a PCE of 4.1%. This efficiency was improved to 5.1% for the optimized cell with TiO2/PbS(2)/CdS/CdSe/ZnS/SiO2 photoelectrode. The maximized efficiency was enhanced about 25% and 70% compared to the PbS-free reference cells with and without the CdSe QDs layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I. Hod, A. Zaban, Materials and interfaces in quantum dot sensitized solar cells: challenges, advances and prospects. Langmuir 30, 7264–7273 (2014)

    Article  CAS  Google Scholar 

  2. D. Sharma, R. Jha, S. Kumar, Quantum dot sensitized solar cell: recent advances and future perspectives in photoanode. Sol. Energy Mater. Sol. Cells 155, 294–322 (2016)

    Article  CAS  Google Scholar 

  3. K.A. Sablon, J.W. Little, K.A. Olver, Z.M. Wang, Effects of AlGaAs energy barriers on InAs/GaAs quantum dot solar cells. J. Appl. Phys. 108, 074305–074309 (2010)

    Article  CAS  Google Scholar 

  4. M.A. Abbas, M.A. Basit, T.J. Park, J.H. Bang, Enhanced performance of PbS sensitized solar cells via controlled successive ionic-layer adsorption and reaction. Phys. Chem. Chem. Phys. 17, 9752–9760 (2015)

    Article  CAS  Google Scholar 

  5. S. Ruhle, M. Shalom, A. Zaban, Quantum-dot-sensitized solar cells. ChemPhysChem 11, 2290–2304 (2010)

    Article  CAS  Google Scholar 

  6. C.B. Murray, D.J. Norris, M.G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993)

    Article  CAS  Google Scholar 

  7. W. Youa, L. Guo, X. Peng, Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15, 2854–2860 (2003)

    Article  CAS  Google Scholar 

  8. A.S. Hassanien, A.A. Akl, Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Superlattices Microstruct. 89, 153–169 (2016)

    Article  CAS  Google Scholar 

  9. A.S. Hassanien, K.A. Aly, A.A. Akl, Study of optical properties of thermally evaporated ZnSe thin films annealed at different pulsed laser powers. J. Alloys Compd. 685, 733–742 (2016)

    Article  CAS  Google Scholar 

  10. Y.J. Shen, Y.L. Lee, Assembly of CdS quantum dots on to mesoscopic TiO2 films for quantum dot-sensitized solar cell application. Nanotechnology 19, 5602–5610 (2008)

    Article  Google Scholar 

  11. T. Takagahara, K. Takeda, Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. APS 46, 1578–1589 (1992)

    Google Scholar 

  12. J. Nozik, Nanoscience and nanostructures for photovoltaics and solar fuels. Nano Lett. 10, 2735–2741 (2010)

    Article  CAS  Google Scholar 

  13. J.B. Sambur, T. Novet, B.A. Parkinson, Multiple exciton collection in a sensitized photovoltaic system. Science 330, 63–66 (2010)

    Article  CAS  Google Scholar 

  14. P.V. Kamat, Quantum dot solar cells semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 112, 18737–18753 (2008)

    Article  CAS  Google Scholar 

  15. X. Song, M. Wang, J. Deng, Y. Ju, T. Xing, J. Ding, X. Yang, J. Shao, ZnO/PbS core/shell nanorod arrays as efficient counter electrode for quantum dot-sensitized solar cells. J. Power Sources 269, 661–670 (2014)

    Article  CAS  Google Scholar 

  16. A.S. Hassanien, A.A. Akl, A.H. Sáaedi, Synthesis, crystallography, microstructure, crystal defects, and morphology of BixZn1–xO nanoparticles prepared by sol–gel technique. CrystEngComm 20, 1716–1730 (2018)

    Article  CAS  Google Scholar 

  17. A.S. Hassanien, A.A. Akl, Optical characteristics of iron oxide thin films prepared by spray pyrolysis technique at different substrate. Appl. Phys. A 124, 752–754 (2018)

    Article  CAS  Google Scholar 

  18. S. Karthick, K. Hemalatha, Improved photovoltaic performance of CdSe/CdS/PbS quantum dot sensitized ZnO nanorod array solar cell. J. Power Sources 248, 439–446 (2014)

    Article  CAS  Google Scholar 

  19. T. Shen, J. Tian, C. Fei, Y. Wang, T. Pullerits, Investigation of the role of Mn dopant in CdS quantum dot sensitized solar cell. Electrochim. Acta 191, 62–69 (2016)

    Article  CAS  Google Scholar 

  20. R.D. Harris, S. Bettis Homan, M. Kodaimati, B. Nepomnyashchii, Electronic processes within quantum dot-molecule complexes. Chem. Rev. 116, 12865–12919 (2016)

    Article  CAS  Google Scholar 

  21. J. Tian, G. Cao, Semiconductor quantum dot-sensitized solar cells. Nano Rev. 4, 22578–22602 (2013)

    Article  CAS  Google Scholar 

  22. V. Murugadoss, S. Nemala, Cu2ZnSnSe4 QDs sensitized electrospun porous TiO2 nanofibers as photoanode for high performance QDSC. Sol. Energy 171, 571–579 (2018)

    Article  CAS  Google Scholar 

  23. R.K. Chava, M. Kang, Ag2S quantum dot sensitized zinc oxide photoanodes for environment friendly photovoltaic devices. Mater. Lett. 199, 188–191 (2017)

    Article  CAS  Google Scholar 

  24. S. Pan, R. Zhou, H. Niu, L. Wan, B. Huang, Y. Huang, Hierarchical SnO2 hollow sub-microspheres for panchromatic PbS quantum dot-sensitized solar cells. J. Alloys Compd. 709, 187–196 (2017)

    Article  CAS  Google Scholar 

  25. M.V. Malashchonak, E.A. Streltsov, G.A. Ragoisha, M.B. Dergacheva, Evaluation of electroactive surface area of CdSe nanoparticles on wide bandgap oxides (TiO2, ZnO) by cadmium under potential deposition. Electrochem. Commun. 72, 176–180 (2016)

    Article  CAS  Google Scholar 

  26. X. Zhao, M. Yang, H. Yang, Fabrication of Poss-coated CdTe quantum dots sensitized solar cells with enhanced photovoltaic properties. J. Alloys Compd. 726, 593–600 (2017)

    Article  CAS  Google Scholar 

  27. H. Wang, S. Yang, Y. Wang, J. Xu, Y. Huang, S. Muhammad, Y. Jiang, Y. Tang, B. Zou, Influence of post-synthesis annealing on PbS quantum dot solar cells. Org. Electron. 42, 309–315 (2017)

    Article  CAS  Google Scholar 

  28. X. Jin, C. Chang, Z. Chen, Graphene tailored gel electrolytes for quasi-solid-state quantum dot-sensitized solar cells. Electrochim. Acta 283, 597–602 (2018)

    Article  CAS  Google Scholar 

  29. H. Seo, Y. Wang, G. Uchida, K. Kamataki, N. Itagaki, K. Koga, M. Shiratani, Analysis on the effect of polysulfide electrolyte composition for higher performance of Si quantum dot-sensitized solar cells. Electrochimica 95, 43–47 (2013)

    Article  CAS  Google Scholar 

  30. P.R. Nikam, P.K. Baviskar, S. Majumder, J.V. Sali, B.R. Sankapal, SILAR controlled CdSe nanoparticles sensitized ZnO nanorods photoanode for solar cell application: electrolyte effect. J. Colloid Interface Sci. 524, 148–155 (2018)

    Article  CAS  Google Scholar 

  31. H. Kim, I. Hwang, K. Yong, highly durable and efficient quantum dotsensitized solar cells based on oligomer gel electrolytes. ACS Appl. Mater. Interfaces 6, 11245–11253 (2014)

    Article  CAS  Google Scholar 

  32. A. Manjceevan, J. Bandara, Robust surface passivation of trap sites in PbS qdots by controlling the thickness of CdS layers in PbS/CdS quantum dot solar cells. Sol. Energy Mater. Sol. Cells 147, 157–163 (2016)

    Article  CAS  Google Scholar 

  33. L. Zhao, W. Xue, W. Fang, Y. Wang, N-doped carbon Cu nanocomposites as counter electrode catalysts in quantum dot-sensitized solar cells. Sol. Energy 169, 505–511 (2018)

    Article  CAS  Google Scholar 

  34. M. Samadpour, S. Arabzade, Graphene/CuS/PbS nanocomposite as an effective counter electrode for quantum dot sensitized solar cells. J. Alloys Compd. 696, 369–375 (2017)

    Article  CAS  Google Scholar 

  35. H. Guo, R. Zhou, Y. Huang, W. Gan, Electrodeposited CuInSe2 counter electrodes for efficient and stable quantum dot-sensitized solar cells. Ceram. Int. 44, 16092–16098 (2018)

    Article  CAS  Google Scholar 

  36. C. Gopi, M. Venkata, Y. Lee, H. Kim, ZnO nanorods decorated with metal sulfides as stable and efficient counter-electrode materials for high-efficiency quantum dot-sensitized solar cells. J. Mater. Chem. 4, 8161–8171 (2016)

    Article  CAS  Google Scholar 

  37. A. Manjceevan, J. Bandara, Optimization of performance and stability of quantum dot sensitized solar cells by manipulating the electrical properties of different metal sulfide counter electrodes. Electrochim. Acta 235, 390–398 (2017)

    Article  CAS  Google Scholar 

  38. K. Surana, R. Mehra, B. Bhattacharya, Quantum dot solar cells with size tuned CdSe QDs exhibiting 1.51 V. Mater. Today 5, 9108–9113 (2018)

    CAS  Google Scholar 

  39. A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, P. Kamat, Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe–TiO2 architecture. J. Am. Chem. Soc. 130, 4007–4015 (2008)

    Article  CAS  Google Scholar 

  40. G. Wang, Q. Meng, Investigation on interfacial charge transfer process in CdSexTe1-x alloyed quantum dot sensitized solar cells. Electrochim. Acta 173, 156–163 (2015)

    Article  CAS  Google Scholar 

  41. F. Huang, J. Hou, H. Wang, H. Tang, Z. Liu, L. Zhang, Q. Zhang, S. Peng, J. Liu, Impacts of surface or interface chemistry of ZnSe passivation layer on the performance of CdS/CdSe quantum dot sensitized solar cells. Nano Energy 32, 433–440 (2017)

    Article  CAS  Google Scholar 

  42. R. Evangelista, S. Makuta, S. Yonezu, J. Andrews, Y. Tachibana, Semiconductor quantum dot sensitized solar cells based on ferricyanide/ferrocyanide redox electrolyte reaching an open circuit photovoltage of 0.8 V. ACS Appl. Mater. Interfaces 8, 13957–13965 (2016)

    Article  CAS  Google Scholar 

  43. A. Badawy, A review on solar cells from Si-single crystals to porous materials and quantum dots. J. Adv. Res. 6, 123–132 (2013)

    Article  CAS  Google Scholar 

  44. K.J. Sun, Y. Jiang, X. Zhong, J.S. Hu, L.J. Wan, Three-dimensional nanostructured electrodes for efficient quantum- dot-sensitized solar cells. Nano Energy 12, 22–26 (2016)

    Google Scholar 

  45. N. Mustakim, C. Ubani, S. Sepeai, N. Ludin, M. Teridi, M. Ibrahim, Quantum dots processed by SILAR for solar cell applications. Sol. Energy 163, 256–270 (2018)

    Article  CAS  Google Scholar 

  46. H. Tung, Quantum dots solar cells based On CdS TiO2 photoanode. Int. J. Latest Res. Sci. Technol. 3, 15–18 (2014)

    Google Scholar 

  47. F. Huang, J. Hou, Q. Zhang, Y. Wang, R.C. Massé, S. Peng, H. Wang, J. Liu, G. Cao, Doubling the power conversion efficiency in CdS/CdSe quantum dot sensitized solar cells with a ZnSe passivation layer. Nano Energy 26, 114–122 (2016)

    Article  CAS  Google Scholar 

  48. Z. Zhengguo, Sh. Chengwu, J. Chen, G. Xiao, L. Long, Combination of short-length TiO2 nanorod arrays and compact PbS quantum-dot thin films for efficient solid-state quantum-dot-sensitized solar cells. Appl. Surf. Sci. 410, 8–13 (2017)

    Article  CAS  Google Scholar 

  49. R. Mahfoudh, Y. Pellegrin, J. Stéphane, M. Boujtita, F. Odobel, Infra-red photoresponse of mesoscopic NiO-based solar cells sensitized with PbS quantum dot. Sci. Rep. 6(1), 1–7 (2016)

    CAS  Google Scholar 

  50. L. Diguna, JSh. Qing, J. Kobayashi, T. Toyoda, High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells. Appl. Phys. Lett. 91(2), 3116–3123 (2007)

    Article  CAS  Google Scholar 

  51. D. Zhonglin, P. Zhenxiao, F. Fabregat-Santiago, K. Zhao, L. Donghui, H. Zhang, Z. Yixin, X. Zhong, Yu. Jong-Sung, J. Bisquert, Carbon counter-electrode-based quantum-dot-sensitized solar cells with certified efficiency exceeding 11%. J Phys Chem Lett 7(16), 3103–3111 (2016)

    Article  CAS  Google Scholar 

  52. L. Yuh-Lang, H. Bau-Ming, C. Huei-Ting, Highly efficient CdSe-sensitized TiO2 photoelectrode for quantum-dot-sensitized solar cell applications. Chem. Mater. 20(22), 6903–6905 (2008)

    Article  CAS  Google Scholar 

  53. S. Pralay, K. Prashant, Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%. J. Am. Chem. Soc. 134(5), 2508–2511 (2012)

    Article  CAS  Google Scholar 

  54. Q. Zhang, G. Xiaozhi, X. Huang, H. Shuqing, L. Dongmei, L. Yanhong, Q. Shen, T. Toyoda, Highly efficient CdS/CdSe-sensitized solar cells controlled by the structural properties of compact porous TiO2 photoelectrodes. Phys. Chem. Chem. Phys. 13(10), 4659–4667 (2011)

    Article  CAS  Google Scholar 

  55. J. Wang, I. MoraSeró, P. Zhenxiao, K. Zhao, H. Zhang, Y. Feng, G. Yang, X. Zhong, J. Bisquert, Core/shell colloidal quantum dot exciplex states for the development of highly efficient quantum-dot-sensitized solar cells. J. Am. Chem. Soc. 135(42), 15913–15922 (2013)

    Article  CAS  Google Scholar 

  56. L. YuhLang, L. YiSiou, Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv. Funct. Mater. 19(4), 604–609 (2009)

    Article  Google Scholar 

  57. Y. Keyou, L. Zhang, J. Qiu, Q. Yongcai, Z. Zonglong, J. Wang, Sh. Yang, A quasi-quantum well sensitized solar cell with accelerated charge separation and collection. J. Am. Chem. Soc. 135(25), 9531–9539 (2013)

    Article  CAS  Google Scholar 

  58. P. Robert, S. Pelet, J. Krueger, M. Grätzel, U. Bach, Quantum dot sensitization of organic–inorganic hybrid solar cells. J. Phys. Chem. B 106(31), 7578–7580 (2002)

    Article  CAS  Google Scholar 

  59. T. Liang, Y. Xiong, H. Liu, W. Shen, High performance PbS quantum dot sensitized solar cells via electric field assisted in situ chemical deposition on modulated TiO2 nanotube arrays. Nanoscale 6(2), 931–938 (2014)

    Article  Google Scholar 

  60. J. Shuang, J. Wang, Q. Shen, L. Yan, X. Zhong, Surface engineering of PbS quantum dot sensitized solar cells with a conversion efficiency exceeding 7%. J. Mater. Chem. 19, 7214–7221 (2016)

    Google Scholar 

  61. L. Jin, S. Yong, T. Kyu, S. Hee, Y. Kim, S. Hwang, K. Min Jae, S. Soohwan, H. Hyouksoo, P. Nam-Gyu, Quantum-dot-sensitized solar cell with unprecedentedly high photocurrent. Sci. Rep. 3, 1050–1060 (2013)

    Article  CAS  Google Scholar 

  62. M. Samadpour, P. Boix, G. Sixto, A. Iraji Zad, N. Taghavinia, I. Mora-Seró, J. Bisquert, Fluorine treatment of TiO2 for enhancing quantum dot sensitized solar cell performance. J. Phys. Chem. C 115(29), 14400–14407 (2011)

    Article  CAS  Google Scholar 

  63. F. Huang, L. Zhang, Q. Zhang, J. Hou, H. Wang, H. Wang, S. Peng, L. Jianshe, C. Guozhong, High efficiency CdS/CdSe quantum dot sensitized solar cells with two ZnSe layers. ACS Appl. Mater. Interfaces 8(50), 34482–34489 (2016)

    Article  CAS  Google Scholar 

  64. P. Naresh, A. Kolay, M. Deepa, S. Shivaprasad, K. Srivastava, Stability, scale-up, and performance of quantum dot solar cells with carbonate-treated titanium oxide films. ACS Appl. Mater. Interfaces 9(30), 25278–25290 (2017)

    Article  CAS  Google Scholar 

  65. J. Guocan, P. Zhenxiao, R. Zhenwei, D. Jun, Ch. Yang, W. Wang, X. Zhong, Poly (vinyl pyrrolidone) a superior and general additive in polysulfide electrolytes for high efficiency quantum dot sensitized solar cells. J. Mater. Chem. 29, 11416–11421 (2016)

    Google Scholar 

  66. Y. Yueyong, L. Zhu, S. Huicheng, X. Huang, L. Yanhong, L. Dongmei, Q. Meng, Composite counter electrode based on nanoparticulate PbS and carbon black: towards quantum dot-sensitized solar cells with both high efficiency and stability. ACS Appl. Mater. Interfaces 4(11), 6162–6168 (2012)

    Article  CAS  Google Scholar 

  67. J. Khanam, Y. Simon, Y. Zhibin, L. Tianhan, M. Pengsu, Efficient, stable, and low-cost PbS quantum dot solar cells with Cr–Ag electrodes. Nanomaterials 9, 1205–1216 (2019)

    Article  CAS  Google Scholar 

  68. G. Néstor, M. Campiña, Q. Shen, T. Toyoda, T. Villarreal, R. Gómez, Uncovering the role of the ZnS treatment in the performance of quantum dot sensitized solar cells. Phys. Chem. Chem. Phys. 13(25), 12024–12032 (2011)

    Article  CAS  Google Scholar 

  69. H. Juan, H. Zhao, F. Huang, L. Chen, W. Qiang, L. Zhiyong, P. Shanglong, N. Wang, C. Guozhong, Facile one-step fabrication of CdS 0.12 Se 0.88 quantum dots with a ZnSe/ZnS-passivation layer for highly efficient quantum dot sensitized solar cells. J. Mater. Chem. A 6(21), 9866–9873 (2018)

    Article  Google Scholar 

  70. T. Zion, I. Hod, M. Shalom, L. Grinis, A. Zaban, The importance of the TiO2/quantum dots interface in the recombination processes of quantum dot sensitized solar cells. Phys. Chem. Chem. Phys. 15(11), 3841–3845 (2013)

    Article  CAS  Google Scholar 

  71. K. Zhao, P. Zhenxiao, E. Cánovas, H. Wang, Y. Song, X. Gong, Boosting power conversion efficiencies of quantum-dot-sensitized solar cells beyond 8% by recombination control. J. Am. Chem. Soc. 137(16), 5602–5609 (2015)

    Article  CAS  Google Scholar 

  72. A. Manjceevan, J. Bandara, Systematic stacking of PbS/CdS/CdSe multi-layered quantum dots for the enhancement of solar cell efficiency by harvesting wide solar spectrum. Electrochim. Acta 271, 567–575 (2018)

    Article  CAS  Google Scholar 

  73. L. Joong, C. Leventis, S. Moon, P. Chen, I. Seigo, A. Haque, T. Torres, PbS and CdS quantum dot-sensitized solid-state solar cells: “old concepts, new results.” Adv. Funct. Mater. 19(17), 2735–2742 (2009)

    Article  CAS  Google Scholar 

  74. A. Quah, Kh. Yaacob, Formation and characterization of PbxCd1-xS interlayer for PbS/CdS/ZnS quantum dots sensitized solar cells. in Advanced Materials Research, vol. 1087, ed. by H.Z. Abdullah, R. Hussin, M.F. Mohd Ali, H. Mohd Taib, S. Ahmad, A.R. Ainuddin, H. Abdul Rahman, M.N. Mohd Hatta, W.N.A. Wan Muhammad, S. Mahzan, M. Izwana Idris et al. (Trans Tech Publications Ltd., 2015), pp. 316–320

  75. N. Zhou et al., Highly efficient PbS/CdS co-sensitized solar cells based on photoanodes with hierarchical pore distribution. Electrochem. Commun. 20, 97–100 (2012)

    Article  CAS  Google Scholar 

  76. D. Esparza et al., Current improvement in hybrid quantum dot sensitized solar cells by increased light-scattering with a polymer layer. RSC Adv. 45, 36140–36148 (2015)

    Article  CAS  Google Scholar 

  77. Y. Liu et al., Effect of the nature of cationic precursors for SILAR deposition on the performance of CdS and PbS/CdS quantum dot-sensitized solar cells. Nanopart. Res. 17, 1–15 (2015)

    Article  CAS  Google Scholar 

  78. L. Hyun, Ch. Kumar, R. Srinivasa, S. Chung, D. Punnoose, The effect of manganese in a CdS/PbS colloidal quantum dot sensitized TiO2 solar cell to enhance its efficiency. New J. Chem. 39(6), 4805–4813 (2015)

    Article  CAS  Google Scholar 

  79. H.M. Khalid, A.A. Mortuza, S.K. Sen, M.K. Basher, M.W. Ashraf, S. Tayyaba, M.N.H. Mia, M. Jalal Uddin, A comparative study on the influence of pure anatase and Degussa-P25 TiO2 nanomaterials on the structural and optical properties of dye sensitized solar cell (DSSC) photoanode. Optik 171, 507–516 (2018)

    Article  CAS  Google Scholar 

  80. K. Veerathangam, M. Senthil Pandian, P. Ramasamy, Influence of SILAR deposition cycles in CdS quantum dot-sensitized solar cells. Mater. Sci. Mater. Electron. 29(9), 7318–7324 (2018)

    Article  CAS  Google Scholar 

  81. H. Anower, Z. Koh, Q. Wang, PbS/CdS-sensitized mesoscopic SnO2 solar cells for enhanced infrared light harnessing. Phys. Chem. Chem. Phys. 14(20), 7367–7374 (2012)

    Article  CAS  Google Scholar 

  82. L. Chang et al., CdS quantum dot-sensitized solar cells based on nano-branched TiO2 arrays. Nanoscale Res. Lett. 9, 1–8 (2014)

    CAS  Google Scholar 

  83. V.P. Bhalekar, P.K. Baviskar, R. Prasad, B.M. Palve, V.S. Kadam, H.M. Pathan, PbS sensitized TiO2 based quantum dot solar cells with efficiency greater than 5% under artificial light: effect of compact layer and surface passivation. Eng. Sci. 7(2), 38–42 (2019)

    Google Scholar 

  84. Ch.V. Thulasivarma, H.-J. Kim, Recent progress in quantum dot sensitized solar cells: an inclusive review of photoanode, sensitizer, electrolyte, and the counter electrode. Mater. Chem. C 717, 4911–4933 (2019)

    Google Scholar 

  85. D. Punnoose, S. Srinivasa, K. Kyoung, H. Kim, Exploring the effect of manganese in lead sulfide quantum dot sensitized solar cell to enhance the photovoltaic performance. RSC Adv. 5(42), 33136–33145 (2015)

    Article  CAS  Google Scholar 

  86. A. Subramanian, D. Punnoose, S. Srinivasa Rao, Ch. Venkata Thulasi Varma, B. Naresh, V. Raman, H.-J. Kim, Improved photovoltaic performance of quantum dot-sensitized solar cells using multi-layered semiconductors with the effect of a ZnSe passivation layer. New J. Chem. 41(13), 5942–5949 (2017)

    Article  CAS  Google Scholar 

  87. L. Yu, Z. Li, Y. Liu, F. Cheng, S. Sun, Enhanced photoelectrochemical performance of CdSe/CdS/TiO2 nanorod arrays solar cell with a PbS underlayer. Mater. Sci. Mater. Electron. 26(4), 2286–2295 (2015)

    Article  CAS  Google Scholar 

  88. M.J. Fahimi, D. Fathi, H. Bastami, Blocking layer modeling for temperature analysis of electron transfer rate in quantum dot sensitized solar cells. Fundam. Appl. Sci. 8(3), 54–70 (2016)

    Article  CAS  Google Scholar 

  89. H.J. Lee, P. Chen, S.-J. Moon, F. Sauvage, K. Sivula, T. Bessho, D.R. Gamelin et al., Regenerative PbS and CdS quantum dot sensitized solar cells with a cobalt complex as hole mediator. Langmuir 25(13), 7602–7608 (2009)

    Article  CAS  Google Scholar 

  90. Z. Li, L. Yu, H. Wang, H. Yang, H. Ma, TiO2 passivation layer on ZnO hollow microspheres for quantum dots sensitized solar cells with improved light harvesting and electron collection. Nanomaterials 10(4), 631 (2020)

    Article  CAS  Google Scholar 

  91. M. Marandi, N. Torabi, F. Ahangarani Farahani, Facile fabrication of well-performing CdS/CdSe quantum dot sensitized solar cells through a fast and effective formation of the CdSe nanocrystalline layer. Sol. Energy 207, 32–39 (2020)

    Article  CAS  Google Scholar 

  92. Y. Xiong, F. Deng, L. Wang, Y. Liu, TiO2 inverse opal based CdS/CdSe quantum dot co-sensitized solar cells. Mater. Sci. Mater. Electron. 25(7), 3039–3043 (2014)

    Article  CAS  Google Scholar 

  93. M.A. Dissanayake, T. Jaseetharan, G.K.R. Senadeera, J.M.K.W. Kumari, Efficiency enhancement in PbS/CdS quantum dot-sensitized solar cells by plasmonic Ag nanoparticles. Solid State Electrochem. 24(2), 283–292 (2020)

    Article  CAS  Google Scholar 

  94. L. Turyanska et al., Paramagnetic, near-infrared fluorescent Mn-doped PbS colloidal nanocrystals. Part. Part. Syst. Charact. 30, 945–949 (2013)

    Article  CAS  Google Scholar 

  95. C.V.V.M. Gopi, M. Venkata-Haritha, S.-K. Kim, H.-J. Kim, A strategy to improve the energy conversion efficiency and stability of quantum dot-sensitized solar cells using manganese-doped cadmium sulfide quantum dots. Dalton Trans. 2, 630–638 (2015)

    Article  Google Scholar 

  96. Y. Li, L. Wei, X. Chen, R. Zhang, X. Sui, Y. Chen, J. Jiao, L. Mei, Efficient PbS/CdS co-sensitized solar cells based on TiO2 nanorod arrays. Nanoscale Res. Lett. 8(1), 1–7 (2013)

    Article  CAS  Google Scholar 

  97. M. Mehrabian, N. Ghasemian, Constructing PbS quantum dot sensitized ZnO nanorod array photoelectrodes for highly efficient photovoltaic devices. Can. J. Phys. 94(7), 687–692 (2016)

    Article  CAS  Google Scholar 

  98. K.L. Foo et al., Sol–gel synthesized zinc oxide nanorods and their structural and optical investigation for optoelectronic application. Nanoscale Res. Lett. 9, 1–10 (2014)

    Article  CAS  Google Scholar 

  99. H. Insung, K. Yong, Counter electrodes for quantum dot sensitized solar cells. ChemElectroChem 2(5), 634–653 (2015)

    Article  CAS  Google Scholar 

  100. C.V.V.M. Gopi, M. Venkata-Haritha, Y.-S. Lee, H.-J. Kim, Correction: ZnO nanorods decorated with metal sulfides as stable and efficient counter-electrode materials for high-efficiency quantum dot-sensitized solar cells. Mater. Chem. A 5(1), 428–429 (2016)

    Article  Google Scholar 

  101. T. Jianjun, T. Shen, X. Liu, C. Fei, L. Lv, G. Cao, Enhanced performance of PbS-quantum-dot-sensitized solar cells via optimizing precursor solution and electrolytes. Sci. Rep. 6(1), 1–9 (2016)

    CAS  Google Scholar 

  102. A. Benayas, R. Fuqiang, E. Carrasco, V. Marzal, B. del Rosal, B.A. Gonfa, Á. Juarranz et al., PbS/CdS/ZnS quantum dots: a multifunctional platform for in vivo near-infrared low-dose fluorescence imaging. Adv. Funct. Mater. 25(42), 6650–6659 (2015)

    Article  CAS  Google Scholar 

  103. M. Naeimi Sani Sabet, M. Marandi, F. Ahmadloo, Fabrication of dye sensitized solar cells with different photoanode compositions using hydrothermally grown and P25 TiO2 nanocrystals. Eur. Phys. J. Appl. Phys. 69, 20401 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maziar Marandi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sotodeian, M., Marandi, M. Fabrication of quantum dot-sensitized solar cells with multilayer TiO2/PbS(X)/CdS/CdSe/ZnS/SiO2 photoanode and optimization of the PbS nanocrystalline layer. J Mater Sci: Mater Electron 32, 10123–10139 (2021). https://doi.org/10.1007/s10854-021-05670-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05670-7

Navigation