Skip to main content

Advertisement

Log in

Efficiency enhancement in PbS/CdS quantum dot-sensitized solar cells by plasmonic Ag nanoparticles

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Semiconductor quantum dots (Q-dots) are attractive nanomaterials to be used in numerous research areas and device fabrication such as sensors, light-emitting diodes, transistors, and solar cells due to their unique optoelectronic properties. Quantum dot-sensitized solar cells (QDSSCs) have drawn considerable attention due to their cost-effectiveness and ability of multiple exciton generation and tunable energy gap of the quantum dots. In this study, plasmonic Ag colloidal nanoparticle-incorporated plasmonic TiO2 double-layer (nanofiber/nanoparticle) electrodes have been fabricated. These TiO2 electrodes were sensitized with PbS/CdS core-shell quantum dots by successive ionic layer adsorption and reaction (SILAR) technique, and QDSSCs were fabricated with polysulfide electrolyte. Cu2S was formed on brass plate and used as the counter electrode of the QDSSC. A higher power conversion efficiency of 4.09% has been obtained due to the plasmonic effect under the simulated light of 100 mW cm−2 with AM 1.5 spectral filter. The overall efficiency and short-circuit current density of the plasmonic QDSSC are enhanced by 15% and 23%, respectively, with respect to the QDSSC without Ag nanoparticles. The enhanced performance of the plasmonic QDSSC is evidently due to the enhanced optical absorption by localized surface plasmon resonance effect by the Ag nanoparticles in the TiO2 photoanode and the resulting increase in the short-circuit photocurrent.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Tang J, Sargent EH (2011) Infrared colloidal quantum dots for photovoltaics: fundamentals and recent progress. Adv Mater 23(1):12–29

    Article  CAS  Google Scholar 

  2. Nozik AJ, Beard MC, Luther JM, Law M, Ellingson RJ, Johnson JC (2010) Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem Rev 110(11):6873–6890

    Article  CAS  Google Scholar 

  3. Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat PV (2008) Quantum dot solar cells. Tuning photo response through size and shape control of CdSe-TiO2 architecture. J Am Chem Soc 130(12):4007–4015

    Article  CAS  Google Scholar 

  4. Lang Lee Y, Lo YS (2009) Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv Funct Mater 19:604–609

    Article  Google Scholar 

  5. Shalom M, Dor S, Grinis L, Zaban A (2009) Core/CdS quantum dot/shell mesoporous solar cells with improved stability and efficiency using an amorphous TiO2 coating. J Phys Chem C 113:3895–3898

    Article  CAS  Google Scholar 

  6. Zhao N, Osedach TP, Chang LY, Geyer SM, Wanger D, Binda MT, Arango AC, Bawendi MG, Bulovic V (2010) Colloidal PbS quantum dot solar cells with high fill factor. ACS Nano 4(7):3743–3752

    Article  CAS  Google Scholar 

  7. Bang JH, Kamat PV (2009) Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe. ACS Nano 3(6):1467–1476

    Article  CAS  Google Scholar 

  8. Raj CJ, Karthick SN, Park S, Hemalatha KV, Kim S-K, Prabakar K, Kim H-J (2014) Improved photovoltaic performance of CdSe/CdS/PbS quantum dot sensitized ZnO nanorod array solar cell. J Power Sources 248:439–446

    Article  Google Scholar 

  9. Chang C-H, Lee Y-H (2007) Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells. J App Phys Lett 91:053503

    Article  Google Scholar 

  10. Pathan HM, Sankapal BR, Desai JD, Lokhande CD (2002) Preparation and characterization of nanocrystalline CdSe thin films deposited by SILAR method. Mater Chem Phys 78:11–14

    Article  CAS  Google Scholar 

  11. Sun W-T, Yu Y, Pan X-Y, Gao X-F, Chen Q, Peng LM (2008) CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J Am Chem Soc 130(4):1124–1125

    Article  CAS  Google Scholar 

  12. Sudhagar P, Jung JH, Park S, Lee YG, Sathyamoorthy R, Kang YS, Ahn H (2000) The performance of coupled (CdS:CdSe) quantum dot-sensitized TiO2 nanofibrous solar cells. Electrochem Commun 11:2220–2224

    Article  Google Scholar 

  13. Jean J, Chang S, Brown PR, Cheng JJ, Rekemeyer PH, Bawendi MG, Gradecak S, Bulović V (2013) ZnO nanowire arrays for enhanced photocurrent in PbS quantum dot solar cells. Adv Mater 25(20):2790–2796

    Article  CAS  Google Scholar 

  14. Dissanayake MAKL, Jaseetharan T, Senadeera GKR, Thotawatthage CA (2018) A novel, PbS:Hg quantum dot-sensitized, highly efficient solar cell structure with triple layered TiO2 photoanode. Electrochim Acta 269:172–179

    Article  CAS  Google Scholar 

  15. Wu J, Mangham SC, Reddy VR, Manasreh MO, Weaver BD (2012) Surface plasmon enhanced intermediate band-based quantum dots solar cell. Sol Energy Mater Sol Cells 102:44–49

    Article  CAS  Google Scholar 

  16. Dao V-D, Choi H-S (2016) Highly-efficient plasmon-enhanced dye-sensitized solar cells created by means of dry plasma reduction. Nanomatterials 6:70

    Article  Google Scholar 

  17. Notariann M, Vernon K, Chou A, Aljada M, Liu J, Motta N (2014) Plasmonic effect of gold nanoparticles in organic solar cells. Sol Energy 106:23–37

    Article  Google Scholar 

  18. Li X, Choy WCH, Lu H, Sha WEI, Ho AHP (2013) Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles. Adv Funct Mater 23:2728–2735

    Article  CAS  Google Scholar 

  19. Kawawaki T, Wang H, Kubo T, Saito K, Nakazaki J, Segawa H, Tatsuma T (2015) Efficiency enhancement of PbS quantum dot/ZnO nanowire bulk-heterojunction solar cells by plasmonic silver nanocubes. ACS Nano 9:4165–4172

    Article  CAS  Google Scholar 

  20. Kawawaki T, Tatsuma T (2013) Enhancement of PbS quantum dot-sensitized photocurrents using plasmonic gold nanoparticles. Phys Chem Chem Phys 15(46):20247–20251

    Article  CAS  Google Scholar 

  21. Dadosh T (2009) Synthesis of uniform silver nanoparticles with a controllable size. Mater Lett 63:2236–2238

    Article  CAS  Google Scholar 

  22. Brennan TP, Ardalan P, Lee H-B-R, Bakke JR, Ding IK, McGehee MD, Bent SF (2011) Atomic layer deposition of CdS quantum dots for solid-state quantum dot sensitized solar cells. Adv Energy Mater 1:1169–1175

    Article  CAS  Google Scholar 

  23. Dissanayake MAKL, Divarathna HKDWMN, Dissanayake CB, Senadeera GKR, Ekanayake PMPC, Thotawattage CA (2016) An innovative TiO2 nanoparticle/nanofibre/nanoparticle, three-layer composite photoanode for efficiency enhancement in dye-sensitized solar cells. J Photochem Photobiol A Chem 322:110–118

    Article  Google Scholar 

  24. Dissanayake MAKL, Sarangika HNM, Senadeera GKR, Divarathna HKDWMNR, Ekanayake EMPC (2017) Application of a nanostructured, tri-layer TiO2 photoanode for efficiency enhancement in quasi-solid electrolyte-based dye-sensitized solar cells. J Appl Electrochem 47:1239–1249

    Article  CAS  Google Scholar 

  25. Bhand GR, Chaure NB (2017) Synthesis of CdTe, CdSe and CdTe/CdSe core/shell QDs from wet chemical colloidal method. J Mater Sci Semicond Process 68:279–287

    Article  CAS  Google Scholar 

  26. Huang K-Y, Luo Y-H, Cheng H-M, Tang J, Huang JH (2019) Performance enhancement of CdS/CdSe quantum dot-sensitized solar cells with (001)-oriented anatase TiO2 nanosheets photoanode. Nanoscale Res Lett 14:18

    Article  Google Scholar 

  27. González-Pedro V, Sima C, Marzari G, Boix PP, Giménez S, Shen Q, Dittrich T, Mora-Seró I (2013) High performing PbS quantum dot sensitized solar cells exceeding 4% efficiency: the role of metal precursor in the electron injection and charge separation. J Phys Chem Chem Phys 15:13835–13843

    Article  Google Scholar 

  28. Thulasi-Varma CV, Srinivasa Rao S, Ikkurthi KD, Kim S-K, Kang T-S, Kim H-J (2015) Enhanced photovoltaic performance and morphological control of the PbS counter electrode grown on functionalized self-assembled nanocrystals for quantum-dot sensitized solar cells via cost-effective chemical bath deposition. J Mater Chem C 3:10195–10206

    Article  CAS  Google Scholar 

  29. Dissanayake MAKL, Kumari JMKW, Senadeera GKR, Thotawatthage CA (2015) Efficiency enhancement in plasmonic dye-sensitized solar cells with TiO2 photoanodes incorporating gold and silver nanoparticles. J Appl Electrochem 46:47–58

    Article  Google Scholar 

  30. Ye W, Long R, Huang H, Xiong Y (2017) Plasmonic nanostructures in solar energy conversion. J Mater Chem C 5:1008–1021

    Article  CAS  Google Scholar 

  31. Pillai S, Green MA (2010) Plasmonics for photovoltaic applications. Sol Energy Mater Sol Cells 94:1481–1486

    Article  CAS  Google Scholar 

  32. Smith JG, Faucheaux JA, Jain PK (2015) Plasmon resonances for solar energy harvesting: A mechanistic outlook. Nano Today 10:67–80

    Article  CAS  Google Scholar 

  33. Wang Q, Moser JE, Gratzel M (2005) Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J Phys Chem B 109:14945–14953

    Article  CAS  Google Scholar 

  34. Mingsukang MA, Buraidah MH, Careem MA (2017) Development of gel polymer electrolytes for application in quantum dot-sensitized solar cells. Ionics 23:347–355

    Article  CAS  Google Scholar 

Download references

Funding

This study is financially supported by the National Science Foundation of Sri Lanka under grant number NSF/SCH/2018/04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. K. L. Dissanayake.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Silver nanoparticle incorporated, PbS:CdS quantum dot-sensitized, photoanode was made

• DSSCs fabricated with above photoanode showed an efficiency of 4.09%

• Efficiency enhancement of 15% and photocurrent enhancement of 23% were achieved due to plasmonic resonance effect

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dissanayake, M.A.K.L., Jaseetharan, T., Senadeera, G.K.R. et al. Efficiency enhancement in PbS/CdS quantum dot-sensitized solar cells by plasmonic Ag nanoparticles. J Solid State Electrochem 24, 283–292 (2020). https://doi.org/10.1007/s10008-019-04420-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04420-4

Keywords

Navigation