Skip to main content
Log in

Optimization of the CdS quantum dot sensitized solar cells with ZnS passivation layer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Quantum dot sensitized solar cell (QDSC) is assembled with CdS/ZnS cosensitized TiO2 photoanode, Pt counter electrode and the polysulfide electrolyte. Since the conduction band of ZnS is higher than that of CdS, ZnS can suppress reversed transformation of electrons and improve the efficiency of electron collection as the passivation layer. The morphology and composition of photoanodes are characterized by XRD, SEM, AFM, EDS and XPS analysis. Results show that CdS and ZnS QDs are covered on the surface of TiO2 porous photoanode successfully to degrade the surface roughness and TiO2 crystal structure has not changed with the introduction of QDs. The photoelectric property of assembled QDSC is analyzed by EIS and J–V curves. The charge recombination at photoanode/electrolyte interface is less likely to occur due to enhanced charge transfer resistance after coating ZnS, leading to a higher power conversion efficiency (PCE) of cells. However, PCE of cell decreases when excessive ZnS QDs are introduced. The photoelectric property of cells sensitized with CdS and ZnS QDs in different cycles is compared and the effect of ZnS incorporated amount on photoelectric property of QDSC is discussed emphatically. It is found that cells sensitized with CdS in seven cycles and ZnS QDs in five cycles exhibit the best photoelectric performance and PCE of which is much higher than that of bare CdS sensitized cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.J. Tian, G.Z. Cao, Design fabrication and modification of metal oxide semiconductor for improving conversion efficiency of excitonic solar cells. Coord. Chem. Rev. 320321, 193–215 (2016)

    Article  Google Scholar 

  2. I. Mora-Sero, J. Bisquert, Breakthroughs in the development of semiconductor sensitized solar cells. J. Phys. Chem. Lett. 1, 3046–3052 (2010)

    Article  Google Scholar 

  3. J.B. Sambur, T. Novet, B.A. Parkinson, Multiple exciton collection in a sensitized photovoltaic system. Science 330, 63–66 (2010)

    Article  Google Scholar 

  4. S.H. Pan, R. Zhou, H.H. Niu, L. Wan, B. Huang, Y.Z. Huang, F.W. Ji, J.Z. Xu, Hierarchical SnO2 hollow sub-microspheres for panchromatic PbS quantum dot-sensitized solar cells. J. Alloys Compd. 709, 187–196 (2017)

    Article  Google Scholar 

  5. J.M. Kim, H. Choi, C. Nahm, C. Kim, J.I. Kim, W. Lee, S. Kang, B. Lee, T. Hwang, H.H. Park, Graded bandgap structure for PbS/CdS/ZnS quantum-dot-sensitized solar cells with a PbxCd1–xS interlayer. Appl. Phys. Lett. 102, 183901 (2013)

    Article  Google Scholar 

  6. G.H. Carey, A.L. Abdelhady, Z.J. Ning, S.M. Thon, O.M. Bakr, E.H. Sargent, Colloidal quantum dot solar cells. Chem. Rev. 115, 12732–12763 (2015)

    Article  Google Scholar 

  7. C. Shen, D. Fichou, Q. Wang, Interfacial engineering for quantum-dot sensitized solar cells. Chem. Asian J. 11, 1183–1193 (2016)

    Article  Google Scholar 

  8. R. Zhou, L. Wan, H.H. Niu, L. Yang, X.L. Mao, Q.F. Zhang, S.D. Miao, J.Z. Xu, G.Z. Cao, Tailoring band structure of ternary CdSxSe1–x quantum dots for highly efficient sensitized solar cells. Sol. Energy Mater. Sol. Cells 155, 20–29 (2016)

    Article  Google Scholar 

  9. R. Zhou, Q.F. Zhang, E. Uchaker, J.L. Lan, M. Yin, G.Z. Cao, Mesoporous TiO2 beads for high efficiency CdS/CdSe quantum dot co-sensitized solar cells. J. Mater. Chem. A 2, 2517–2525 (2014)

    Article  Google Scholar 

  10. R. Zhou, H.H. Niu, Q.F. Zhang, E. Uchaker, Z.Q. Guo, L. Wan, S.D. Miao, J.Z. Xu, G.Z. Cao, Influence of deposition strategies on CdSe quantum dot-sensitized solar cells: a comparison between successive ionic layer adsorption and reaction and chemical bath deposition. J. Mater. Chem. A 3, 12539–12549 (2015)

    Article  Google Scholar 

  11. T. Shen, L. Bian, B. Li, K.B. Zheng, T. Pullerits, J.J. Tian, A structure of CdS/CuxS quantum dots sensitized solar cells. Appl. Phys. Lett. 108, 21 (2016)

    Google Scholar 

  12. D.R. Baker, P.V. Kamat, Photosensitization of TiO2 nanostructures with CdS quantum dots: particulate versus tubular support architectures. Adv. Funct. Mater. 19, 805–811 (2009)

    Article  Google Scholar 

  13. C.L. Cao, C.G. Hu, W.D. Shen, S.X. Wang, Y.S. Tian, X. Wang, Synthesis and characterization of TiO2/CdS core-shell nanorod arrays and their photoelectrochemical property. J. Alloys Compd. 523, 139–145 (2012)

    Article  Google Scholar 

  14. P. Ardalan, T.P. Brennan, H.B.R. Lee, J.R. Bakke, I.K. Ding, M.D. McGehee, S.F. Bent, Effects of self-assembled monolayers on solid-state CdS quantum dot sensitized solar cells. ACS Nano 5, 1495–1504 (2011)

    Article  Google Scholar 

  15. D.W. Jeong, J.Y. Park, T.S. Kim, T.Y. Seong, J.Y. Kim, M.J. Ko, B.S. Kim, Fine tuning of colloidal CdSe quantum dot photovoltaic properties by microfluidic reactors. Electrochim. Acta 222, 1668–1676 (2016)

    Article  Google Scholar 

  16. C. Ratanatawanate, C.R. Xiong, K.J. Balkus, Fabrication of PbS quantum dot doped TiO2 nanotubes. ACS Nano 2, 1682–1688 (2008)

    Article  Google Scholar 

  17. J.J. Tian, T. Shen, X.G. Liu, C.B. Fei, L.L. Lv, G.Z. Cao, Enhanced performance of PbS-quantum-dot-sensitized solar cells via optimizing precursor solution and electrolytes. Sci. Rep. 6, 23094 (2016)

    Article  Google Scholar 

  18. S.K. Sarkar, J.Y. Kim, D.N. Goldstein, N.R. Neale, K. Zhu, C.M. Elliot, A.J. Frank, S.M. George, In2S3 atomic layer deposition and its application as a sensitizer on TiO2 nanotube arrays for solar energy conversion. J. Phys. Chem. C 114, 8032–8039 (2010)

    Article  Google Scholar 

  19. P.Z. Yang, Q.W. Tang, C.M. Ji, H.B. Wang, A strategy of combining SILAR with solvothermal process for In2S3 sensitized quantum dot-sensitized solar cells. Appl. Surf. Sci. 357, 666–671 (2015)

    Article  Google Scholar 

  20. Y.T. Li, L. Wei, X.Y. Chen et al., Efficient PbS/CdS co-sensitized solar cells based on TiO2 nanorod arrays. Nanoscale Res. Lett. 8, 1–7 (2013)

    Article  Google Scholar 

  21. C.C. Liu, Z.F. Liu, Y.B. Li et al., CdS/PbS co-sensitized ZnO nanorods and its photovoltaic properties. Appl. Surf. Sci. 257, 7041–7046 (2011)

    Article  Google Scholar 

  22. J.H. Borja, Y.V. Vorobiev, R.R. Bon, Thin film solar cells of CdS/PbS chemically deposited by an ammonia-free process. Sol. Energy Mater. Sol. Cells. 95, 1882–1887 (2011)

    Article  Google Scholar 

  23. Y.L. Lee, Y.S. Lo, Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv. Funct. Mater. 19, 604–609 (2009)

    Article  Google Scholar 

  24. N. Zhou, G.P. Chen, X.L. Zhang, L.Y. Cheng, Y.H. Luo, D.M. Li, Q.B. Meng, Highly efficient PbS/CdS co-sensitized solar cells based on photoanodes with hierarchical pore distribution. Electrochem. Commun. 20, 97–100 (2012)

    Article  Google Scholar 

  25. B.K. Liu, Y.F. Xue, J.T. Zhang, D.J. Wang, T.F. Xie, X.Y. Suo, L.L. Mu, H.Z. Shi, Study on photo-induced charge transfer in the heterointerfaces of CuInS2/CdS co-sensitized mesoporous TiO2 photoelectrode. Electrochim. Acta 192, 370–376 (2016)

    Article  Google Scholar 

  26. M. Samadpour, Efficient CdS/CdSe/ZnS quantum dot sensitized solar cells prepared by ZnS treatment from methanol solvent. Sol. Energy 144, 63–70 (2017)

    Article  Google Scholar 

  27. Q. Shen, J. Kobayashi, L.J. Diguna, T. Toyoda, Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells. J. Appl. Phys. 103, 8 (2008)

    Google Scholar 

  28. M. Marandi, E. Rahmani, F.A. Farahani, Optimization of the photoanode of CdS quantum dot-sensitized solar cells using light-scattering TiO2 hollow spheres. J. Electron. Mater. 46, 6769–6783 (2017)

    Article  Google Scholar 

  29. M.M. Aslam, S.M. Ali, A. Fatehmulla, W.A. Farooq, M. Atif, A.M. Al-Dhafiri, M.A. Shar, Growth and characterization of layer by layer CdS-ZnS QDs on dandelion like TiO2 microspheres for QDSSC application. Mater. Sci. Semicond. Process. 36, 57–64 (2015)

    Article  Google Scholar 

  30. Z. Wang, X.Z. Wang, X.S. Jiang, J.J. Tao, Z.Z. Gong, Y.L. Cheng, M.A. Zhang, L. Yang, J.G. Lv, G. He, CdS/ZnS co-sensitized hierarchical TiO2 nanotree array with rutile/anatase junctions for enhanced photoelectrochemical performance. J. Electrochem. Soc. 163, H1041–H1046 (2016)

    Article  Google Scholar 

  31. H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, G.Q. Lu, Anatase TiO2 Single crystals with a large percentage of reactive facets. Nature 453, 638–641 (2008)

    Article  Google Scholar 

  32. C.V.V.M. Gopi, M.V. Haritha, S.K. Kim, H.J. Kim, A strategy to improve the energy conversion efficiency and stability of quantum dot-sensitized solar cells using manganese-doped cadmium sulfide quantum dots. Dalton Trans. 44, 630 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the outstanding academic leaders of Harbin (2017RAXXJ078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, W., Zhang, Y., Wang, D. et al. Optimization of the CdS quantum dot sensitized solar cells with ZnS passivation layer. J Mater Sci: Mater Electron 29, 14796–14802 (2018). https://doi.org/10.1007/s10854-018-9616-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9616-9

Navigation