Skip to main content
Log in

A review of intermetallic compound growth and void formation in electrodeposited Cu–Sn Layers for microsystems packaging

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In recent years, Cu–Sn solid–liquid interdiffusion (SLID) bonding has been used in semiconductor packaging, die-attach, fine-pitch interconnection, and through-silicon vias (TSV)-based 3D stacking applications. Due to its specific advantages such as lower cost, less stringent surface uniformity requirements, higher thermal bond stability, and relatively lower processing temperatures, electrodeposited Cu–Sn-based bonding is explored to achieve wafer-level hermetic encapsulation of miniaturized sensors; however, the overall reliability of Cu–Sn bonds remains a challenge. The voids formed in the electrodeposited Cu–Sn layers and the brittle nature of the formed intermetallic compounds (IMC) affects the long term reliability of the Cu–Sn SLID bonds. A significant concern is the sporadic interfacial void formation within the Cu–Sn layers during the bonding process and high-temperature applications. This review article summarizes the different mechanisms of the IMC formation and their growth and explores the reasons behind the interfacial voids formed in the electrodeposited Cu–Sn layers when these are annealed at different temperatures ranging from 150 to 300 °C. A detailed description of the IMC and void formation and their subsequent growth in the thick electrodeposited Cu–Sn layers is presented, along with the various design parameters affecting the IMC growth during the bonding process. Various remedies to minimize these interfacial voids are also suggested. Higher bonding pressure, lower processing temperature, and reduced surface roughness are the key factors affecting the void size and voids density. The chemical impurity in the copper electrolyte and the resultant surface roughness affect the interfacial void formation in the electrodeposited Cu–Sn layers. This review will help minimize the interfacial voids and, thus, obtain higher bond reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. C. B. O’Neal, A. P. Malshe, S. B. Singh, W. D. Brown, and W. P. Eaton, “Challenges in the packaging of MEMS,” Proc. - Int. Symp. Adv. Packag. Mater. Process. Prop. Interfaces, (1999) 41–47. Doi:https://doi.org/10.1109/ISAPM.1999.757284

  2. M. Esashi, Wafer level packaging of MEMS. J. Micromechanics Microengineering 18, 73001–730012 (2008). https://doi.org/10.1088/0960-1317/18/7/073001

    Article  CAS  Google Scholar 

  3. N. Belkadi, K. Nadaud, C. Hallepee, D. Passerieux, P. Blondy, Zero-Level Packaged RF-MEMS Switched Capacitors on Glass Substrates. J. Microelectromechanical Syst. 29, 109–116 (2020). https://doi.org/10.1109/JMEMS.2019.2949949

    Article  CAS  Google Scholar 

  4. B. Luo, M. Ma, M.A. Zhang, J. Shang, C.P. Wong, “Composite Glass-Silicon Substrates Embedded with Microcomponents for MEMS System Integration”, IEEE Trans. Components. Packag. Manuf. Technol. 9, 201–208 (2019). https://doi.org/10.1109/TCPMT.2018.2889368

    Article  Google Scholar 

  5. O. Temel, Y.E. Kalay, T. Akin, Wafer-Level Low-Temperature Solid-Liquid Inter-Diffusion Bonding With Thin Au-Sn Layers for MEMS Encapsulation. J. Microelectromechanical Syst. 30, 64–71 (2020). https://doi.org/10.1109/JMEMS.2020.3040039

    Article  Google Scholar 

  6. W. Zhang, J. Gu, L. Li, X. Li, Through-Glass-Via Based Microstrip Band-Pass Filters Fabricated with Wafer-Level Low-Melting-Point Alloy Micro-Casting. IEEE Electron Device Lett. 41, 1106–1109 (2020). https://doi.org/10.1109/LED.2020.2993615

    Article  CAS  Google Scholar 

  7. K. Zoschke et al., “Cap Fabrication and Transfer Bonding Technology for Hermetic and Quasi Hermetic Wafer Level MEMS Packaging,” in Electronic Components and Technology Conference (2020) 432–438. Doi:https://doi.org/10.1109/ECTC32862.2020.00076

  8. H.K. Kannojia, J. Arab, B.J. Pegu, P. Dixit, Fabrication and Characterization of Through-Glass Vias by the ECDM Process. J. Electrochem. Soc. 166, D531–D538 (2019). https://doi.org/10.1149/2.0141913jes

    Article  CAS  Google Scholar 

  9. A. Duan, T.T. Luu, K. Wang, K. Aasmundtveit, N. Hoivik, Wafer-level Cu-Sn micro-joints with high mechanical strength and low Sn overflow. J. Micromechanics Microengineering. 25, 97001 (2015). https://doi.org/10.1088/0960-1317/25/9/097001

    Article  CAS  Google Scholar 

  10. R.R. Tummala, Fundamentals of Microsystems Packaging. Soldering & Surface Mount Technology (2003). https://doi.org/10.1108/ssmt.2003.21915aae.006

    Article  Google Scholar 

  11. S. Farrens, Metal based wafer level packaging, Proc. Int. Wafer- Lev. Packag. Conf. (2008) 8–14.

  12. C. Ko, K. Chen, Low temperature bonding technology for 3D integration. Microelectron. Reliab. 52, 302–311 (2012). https://doi.org/10.1016/j.microrel.2011.03.038

    Article  Google Scholar 

  13. Y.I. Kim, K.H. Yang, W.S. Lee, 2004 Thermal degradation of DRAM retention time: Characterization and improving techniques, in:IEEE Int. Reliab. Phys. Symp. Proc., 667–668. Doi:https://doi.org/10.1109/RELPHY.2004.1315442.

  14. C. Ko, K. Chen, Wafer-level bonding/stacking technology for 3D integration. Microelectron. Reliab. 50, 481–488 (2010). https://doi.org/10.1016/j.microrel.2009.09.015

    Article  CAS  Google Scholar 

  15. H. Liu, K. Wang, K.E. Aasmundtveit, N. Hoivik, Intermetallic Compound Formation Mechanisms for Cu-Sn Solid-Liquid Interdiffusion Bonding. J. Electron. Mater. 41, 2453–2462 (2012). https://doi.org/10.1007/s11664-012-2060-3

    Article  CAS  Google Scholar 

  16. B.S. Lee, S.K. Hyun, J.W. Yoon, Cu–Sn and Ni–Sn transient liquid phase bonding for die-attach technology applications in high-temperature power electronics packaging. J. Mater. Sci. Mater. Electron. 28, 7827–7833 (2017). https://doi.org/10.1007/s10854-017-6479-4

    Article  CAS  Google Scholar 

  17. C. Yuhan, L. Le, Wafer Level hermetic packaging based on Cu-Sn isothermal solidification technology. J. Semicond. 30, 4–8 (2009). https://doi.org/10.1088/1674-4926/30/8/086001

    Article  CAS  Google Scholar 

  18. B. Balakrisnan, C.C. Chum, M. Li, Z. Chen, T. Cahyadi, Fracture Toughness of Cu-Sn Intermetallic Thin Films. J. Electron. Mater. 32, 166–171 (2003). https://doi.org/10.1007/s11664-003-0188-x

    Article  CAS  Google Scholar 

  19. B.H. Kwak, M.H. Jeong, J.W. Kim, B. Lee, H.J. Lee, Y.B. Park, Correlations between interfacial reactions and bonding strengths of Cu/Sn/Cu pillar bump. Microelectron. Eng. 89, 65–69 (2012). https://doi.org/10.1016/j.mee.2011.01.020

    Article  CAS  Google Scholar 

  20. A. Paul, Growth mechanism of phases, Kirkendall voids, marker plane position and indication of the relative mobilities of the species in the interdiffusion zone. J. Mater. Sci. Mater. Electron. 22, 833–837 (2011). https://doi.org/10.1007/s10854-010-0220-x

    Article  CAS  Google Scholar 

  21. K. Zeng, R. Stierman, T. Chiu, D. Edwards, K. Ano, K.N. Tu, Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability. J. Appl. Phys. 97, 1–8 (2005). https://doi.org/10.1063/1.1839637

    Article  CAS  Google Scholar 

  22. G. Ross, V. Vuorinen, M. Paulasto-Kröckel, Void formation and its impact on Cu-Sn intermetallic compound formation. J. Alloys Compd. 677, 127–138 (2016). https://doi.org/10.1016/j.jallcom.2016.03.193

    Article  CAS  Google Scholar 

  23. G. Ross, P. Malmberg, V. Vuorinen, M. Paulasto-Kröckel, The Role of Ultrafine Crystalline Behavior and Trace Impurities in Copper on Intermetallic Void Formation. ACS Appl. Electron. Mater. 1, 88–95 (2019). https://doi.org/10.1021/acsaelm.8b00029

    Article  CAS  Google Scholar 

  24. H.K. Kannojia, P. Dixit, Effect of surface roughness on void formation and intermetallic growth in electrodeposited Cu-Sn stacks. Mater. Lett. 257, 126710 (2019). https://doi.org/10.1016/j.matlet.2019.126710

    Article  CAS  Google Scholar 

  25. H. Xu, T. Suni, V. Vuorinen, J. Li, H. Heikkinen, P. Monnoyer, M. Paulasto-Kröckel, Wafer-level SLID bonding for MEMS encapsulation. Adv. Manuf. 1, 226–235 (2013). https://doi.org/10.1007/s40436-013-0035-0

    Article  CAS  Google Scholar 

  26. T.A. Tollefsen, A. Larsson, O.M. Løvvik, K. Aasmundtveit, Au-Sn SLID Bonding - Properties and Possibilities. Metall. Mater. Trans. B. 43, 397–405 (2012). https://doi.org/10.1007/s11663-011-9609-z

    Article  CAS  Google Scholar 

  27. A. Munding, H. Hubner, A. Kaiser, S. Penka, P. Benkart, E. Kohn, Wafer Level 3-D ICs Process Technology, Springer. New York (2008). https://doi.org/10.1007/978-0-387-76534-1

    Article  Google Scholar 

  28. C.C. Lee, C.Y. Wang, G. Matijasevic, Advances in Bonding Technology for Electronic Packaging. J. Electron. Packag. 115, 201–207 (1993). https://doi.org/10.1115/1.2909318

    Article  Google Scholar 

  29. G.S. Matijasevic, C.C. Lee, C.Y. Wang, Au-Sn alloy phase diagram and properties related to its use as a bonding medium. Thin Solid Films 223, 276–287 (1993). https://doi.org/10.1016/0040-6090(93)90533-U

    Article  CAS  Google Scholar 

  30. R.W. Johnson, C. Wang, Y. Liu, J.D. Scofield, Power Device Packaging Technologies for Extreme Environments. IEEE Trans. Electron. Packag. Manuf. 30, 182–193 (2007). https://doi.org/10.1109/TEPM.2007.899158

    Article  CAS  Google Scholar 

  31. K. Wang, K. Aasmundtveit, H. Jakobsen, Surface Evolution and Bonding Properties of Electroplated Au/Sn/Au, in: 2nd Electron. Syst. Integr. Technol. Conf., IEEE, Greenwich, 2008: pp. 1131–1134. Doi:https://doi.org/10.1109/ESTC.2008.4684511.

  32. T.T. Luu, N. Hoivik, K. Wang, K.E. Aasmundtveit, A.B. Vardøy, Characterization of Wafer-Level Au-In-Bonded Samples at Elevated Temperatures. Metall. Mater. Trans. A. 46, 2637–2645 (2015). https://doi.org/10.1007/s11661-015-2865-9

    Article  CAS  Google Scholar 

  33. N. Hoivik, K. Wang, K. Aasmundtveit, G. Salomonsen, A. Lapadatu, G. Kittilsland, B. Stark, Fluxless Wafer-Level Cu-Sn Bonding for Micro- and Nanosystems Packaging, in: Electron. Syst. Technol. Conf., IEEE, Berlin, 2010: pp. 1–5. Doi:https://doi.org/10.1109/ESTC.2010.5643013.

  34. A. Lapadatu, T.I. Simonsen, G. Kittilsland, B. Stark, N. Hoivik, V. Dalsrud, G. Salomonsen, Cu-Sn Wafer Level Bonding for Vacuum Encapsulation of Microbolometers Focal Plane Arrays. Electrochem. Soc. 33, 73–82 (2010). https://doi.org/10.1149/1.3483495

    Article  CAS  Google Scholar 

  35. H. Liu, G. Salomonsen, K. Wang, K.E. Aasmundtveit, N. Hoivik, Wafer-Level Cu/Sn to Cu/Sn SLID-Bonded Interconnects with Increased Strength, IEEE Trans. Components. Packag. Manuf. Technol. 1, 1350–1358 (2011). https://doi.org/10.1109/TCPMT.2011.2156793

    Article  CAS  Google Scholar 

  36. T.T. Luu, A.N.I. Duan, K.E. Aasmundtveit, N. Hoivik, Optimized Cu-Sn Wafer-Level Bonding Using Intermetallic Phase Characterization. J. Electron. Mater. 42, 3582–3592 (2013). https://doi.org/10.1007/s11664-013-2711-z

    Article  CAS  Google Scholar 

  37. M.H. Jeong, J.W. Kim, B.H. Kwak, Y.B. Park, Effects of annealing and current stressing on the intermetallic compounds growth kinetics of Cu/thin Sn/Cu bump. Microelectron. Eng. 89, 50–54 (2012). https://doi.org/10.1016/j.mee.2011.04.025

    Article  CAS  Google Scholar 

  38. T.T. Luu, N. Hoivik, K. Wang, K.E. Aasmundtveit, A.B. Vardøy, High-Temperature Mechanical Integrity of Cu-Sn SLID Wafer-Level Bonds. Metall. Mater. Trans. A. 46, 5266–5274 (2015). https://doi.org/10.1007/s11661-015-3068-0

    Article  CAS  Google Scholar 

  39. N. Hoivik, K. Aasmundtveit, Wafer-Level Solid-Liquid Interdiffusion Bonding, in Handbook of Wafer Bonding. ed. by N. Hoivik (Wiley, New Jersey, 2012)

    Google Scholar 

  40. V. Vuorinen, H. Dong, G. Ross, J. Hotchkiss, J. Kaaos, M. Paulasto-Kröckel, Wafer Level Solid Liquid Interdiffusion Bonding: Formation and Evolution of Microstructures. J. Electron. Mater. 1, 1–7 (2020). https://doi.org/10.1007/s11664-020-08530-y

    Article  CAS  Google Scholar 

  41. K.E. Aasmundtveit, T. Eggen, T. Manh, H.V. Nguyen, In–Bi low-temperature SLID bonding for piezoelectric materials. Solder. Surf. Mt. Technol. 30, 100–105 (2018). https://doi.org/10.1108/SSMT-10-2017-0034

    Article  Google Scholar 

  42. W.J. Reichenecker, Electrical Conductivity of the Copper-Tin Intermetallic Compound. Weld. J. 59, 308–310 (1980)

    Google Scholar 

  43. H.P.R. Frederikse, R.J. Fields, A. Feldman, Thermal and electrical properties of copper-tin and nickel-tin intermetallics. J. Appl. Phys. 72, 2879–2882 (1992). https://doi.org/10.1063/1.351487

    Article  CAS  Google Scholar 

  44. B.J. Grummel, H.A. Mustain, Z.J. Shen, J.C. Elmes, A.R. Hefner, “Reliability characterization of Au-In transient liquid phase bonding through electrical resistivity measurement”, IEEE Trans. Components. Packag. Manuf. Technol. 5, 1726–1733 (2015). https://doi.org/10.1109/TCPMT.2015.2489686

    Article  CAS  Google Scholar 

  45. D. Frear, S. Burchett, A.H. Morgan, J.H. Lau, Mechanics of Solder Alloy Interconnects (Springer Science and Business Media, Germany, 1994).

    Google Scholar 

  46. A. Zayed, M. Saliqur, P.Y. Chia, A.S.M.A. Haseeb, Mechanical properties of intermetallic compounds in electrodeposited multilayered thin fi lm at small scale by nanoindentation. Mater. Lett. 147, 50–53 (2015). https://doi.org/10.1016/j.matlet.2015.01.127

    Article  CAS  Google Scholar 

  47. G. Ross, Intermetallic Void Formation in Cu-Sn Micro-Connects (Aalto University, Finland, 2019).

    Google Scholar 

  48. T. Laurila, V. Vuorinen, J.K. Kivilahti, Interfacial reactions between lead-free solders and common base materials. Mater. Sci. Eng. R Reports. 49, 1–60 (2005). https://doi.org/10.1016/j.mser.2005.03.001

    Article  CAS  Google Scholar 

  49. H. Xu, A. Rautiainen, V. Vuorinen, E. Österlund, T. Suni, H. Heikkinen, P. Monnoyer, Reliability Performance of Au-Sn and Cu-Sn Wafer Level SLID Bonds for MEMS. Electron. Syst. Conf. 1–5 (2014). https://doi.org/10.1109/ESTC.2014.6962771

  50. S. Fürtauer, D. Li, D. Cupid, H. Flandorfer, The Cu–Sn phase diagram, Part I: New experimental results. Intermetallics 34, 142–147 (2013). https://doi.org/10.1016/j.intermet.2012.10.004

    Article  CAS  Google Scholar 

  51. K.N. Tu, Interdiffusion and reaction in bimetallic Cu-Sn films. Acta Mater. 21, 347–354 (1973). https://doi.org/10.1016/0001-6160(73)90190-9

    Article  CAS  Google Scholar 

  52. J.D. Mcbrayer, R.M. Swanson, T.W. Sigmon, Diffusion of Metals in Silicon Dioxide. J. Electrochem. Soc. 133, 1242–1246 (1986). https://doi.org/10.1149/1.2108827

    Article  CAS  Google Scholar 

  53. K.N. Tu, R.D. Thompson, Kinetics of interfacial reaction in bimetallic CuSn thin films. Acta Metall. 30, 947–952 (1982). https://doi.org/10.1016/0001-6160(82)90201-2

    Article  CAS  Google Scholar 

  54. T.N. Rhodin, Low Temperature Oxidation of Copper. I. Physical Mechanism, J. Am. Chem. Soc. 72 (1950) 5102–5106. https://doi.org/https://doi.org/10.1021/ja01167a079.

  55. H.K. Kannojia, S.K. Sharma, P. Dixit, Void Formation and Intermetallic Growth in Pulse Electrodeposited Cu-Sn Layers for MEMS Packaging. J. Electron. Mater. 47, 7386–7400 (2018). https://doi.org/10.1007/s11664-018-6679-6

    Article  CAS  Google Scholar 

  56. K.N. Tu, Cu/Sn interfacial reactions: thin-film case versus bulk case. Mater. Chem. Phys. 46, 217–223 (1996). https://doi.org/10.1016/S0254-0584(97)80016-8

    Article  CAS  Google Scholar 

  57. H.K. Kim, K.N. Tu, Kinetic Analysis of the Soldering Reaction between Eutectic SnPb alloy and Cu accompanied by Ripening. Phys. Rev. B. 53, 27–34 (1996). https://doi.org/10.1103/PhysRevB.53.16027

    Article  Google Scholar 

  58. J.S. Kang, R.A. Gagliano, G. Ghosh, M.E. Fine, Isothermal Solidification of Cu/Sn Diffusion Couples to Form Thin-Solder Joints. J. Electron. Mater. 31, 1238–1243 (2002). https://doi.org/10.1007/s11664-002-0015-9

    Article  CAS  Google Scholar 

  59. S. Bader, W. Gust, H. Hieber, Rapid Formation of Intermetallics Compounds by Interdiffusion in the Cu-Sn and Ni-Sn Sysytems. Acta Metall. Mater. 43, 329–337 (1995). https://doi.org/10.1016/0956-7151(95)90289-9

    Article  CAS  Google Scholar 

  60. H.T. Ma, L. Qu, M.L. Huang, L.Y. Gu, N. Zhao, L. Wang, In-situ study on growth behavior of Ag3Sn in Sn-3.5Ag/Cu soldering reaction by synchrotron radiation real-time imaging technology. J. Alloys Compd. 537, 286–290 (2012). https://doi.org/10.1016/j.jallcom.2012.05.055

    Article  CAS  Google Scholar 

  61. L. Qu, N. Zhao, H.J. Zhao, M.L. Huang, H.T. Ma, In situ study of the real-time growth behavior of Cu6Sn 5 at the Sn/Cu interface during the soldering reaction. Scr. Mater. 72–73, 43–46 (2014). https://doi.org/10.1016/j.scriptamat.2013.10.013

    Article  CAS  Google Scholar 

  62. M. Oh, (1994) Growth Kinetics of Intermetallic Phases in the Cu-Sn Binary and the Cu-Ni-Sn Ternary Systems at Low Temperatures, Lehigh University, Pennsylvania

  63. M.A.A.M. Salleh, C.M. Gourlay, J.W. Xian, S.A. Belyakov, H. Yasuda, S.D. McDonald, K. Nogita, In situ imaging of microstructure formation in electronic interconnections. Sci. Rep. 7, 1–11 (2017). https://doi.org/10.1038/srep40010

    Article  CAS  Google Scholar 

  64. N. Zhao, Y. Zhong, M.L. Huang, H.T. Ma, W. Dong, Growth kinetics of Cu6Sn5 intermetallic compound at liquid-solid interfaces in Cu/Sn/Cu interconnects under temperature gradient. Sci. Rep. 5, 1–12 (2015). https://doi.org/10.1038/srep13491

    Article  CAS  Google Scholar 

  65. L. Sun, M. Chen, L. Zhang, Microstructure evolution and grain orientation of IMC in Cu-Sn TLP bonding solder joints. J. Alloys Compd. 786, 677–687 (2019). https://doi.org/10.1016/j.jallcom.2019.01.384

    Article  CAS  Google Scholar 

  66. Z.Q. Liu, P.J. Shang, A. D. X. Li, J.K. Shang, Growth kinetics and microstructural evolution of Cu-Sn intermetallic compounds on different Cu substrates during thermal aging, in: Int. Conf. Electron. Packag. Technol. High Density Packag., Beijing, 2009: pp. 569–571. Doi:https://doi.org/10.1109/ICEPT.2009.5270685.

  67. H. Liu, K. Wang, K.E. Aasmundtveit, N. Hoivik, Intermetallic Compound Formation Mechanisms for Cu-Sn Solid – Liquid Interdiffusion Bonding. J. Electron. Mater. 41, 2453–2462 (2012). https://doi.org/10.1007/s11664-012-2060-3

    Article  CAS  Google Scholar 

  68. A. Suzuki, Y. Mishin, Atomic mechanisms of grain boundary diffusion: Low versus high temperatures. J. Mater. Sci. 40, 3155–3161 (2005). https://doi.org/10.1007/s10853-005-2678-0

    Article  CAS  Google Scholar 

  69. R. Balasubramaniam, Callister’S Materials Science And Engineering: Indian Adaptation (W/Cd) (Wiley India Pvt, Limited, 2009).

    Google Scholar 

  70. H.H. Lou, Y. Huang, Electroplating, in Encycl Chem Process. ed. by H.H. Lou (Taylor and Francis, New York, 2006), pp. 1–10

    Google Scholar 

  71. Y.A. Shen, F.Y. Ouyang, C. Chen, Effect of Sn grain orientation on growth of Cu-Sn intermetallic compounds during thermomigration in Cu-Sn2.3Ag-Ni microbumps. Mater. Lett. 236, 190–193 (2019). https://doi.org/10.1016/j.matlet.2018.10.112

    Article  CAS  Google Scholar 

  72. W. Hsu, F. Ouyang, ScienceDirect Effects of anisotropic b -Sn alloys on Cu diffusion under a temperature gradient. Acta Mater. 81, 141–150 (2014). https://doi.org/10.1016/j.actamat.2014.08.029

    Article  CAS  Google Scholar 

  73. N.S. Bosco, F.W. Zok, Critical interlayer thickness for transient liquid phase bonding in the Cu–Sn system. Acta Mater. 52, 2965–2972 (2004). https://doi.org/10.1016/j.actamat.2004.02.043

    Article  CAS  Google Scholar 

  74. T.T. Luu, A. Duan, K. Wang, K. Aasmundtveit, N. Hoivik, Cu/Sn SLID Wafer-level Bonding Optimization, in: IEEE 63rd Electron. Components Technol. Conf., Las Vegas NV, 2013: pp. 1531–1537. Doi:https://doi.org/10.1109/ECTC.2013.6575775.

  75. Q. Li, Y.C. Chan, Growth kinetics of the Cu3Sn phase and void formation of sub-micrometre solder layers in Sn– Cu binary and Cu–Sn–Cu sandwich structures. J. Alloys Compd. 567, 47–53 (2013). https://doi.org/10.1016/j.jallcom.2013.03.093

    Article  CAS  Google Scholar 

  76. R. Huang, H. Ma, S. Shang, A. Kunwar, Y. Wang, H. Ma, Size effect on interface reaction of Sn–xCu/Cu solder joints during multiple reflows. J. Mater. Sci. Mater. Electron. 30, 4359–4369 (2019). https://doi.org/10.1007/s10854-019-00758-7

    Article  CAS  Google Scholar 

  77. J. Fan, T. Shi, Z. Tang, B. Gong, J. Li, J. Huang, T. Li, Low-Temperature Cu-Cu Bonding Process Based on the Sn-Cu Multilayer and Self-Propagating Reaction Joining. J. Electron. Mater. 48, 1310–1317 (2019). https://doi.org/10.1007/s11664-018-6827-z

    Article  CAS  Google Scholar 

  78. H.J. Van De Wiel, A.B. Vardøy, G. Hayes, H.R. Fischer, A. Lapadatu, M.M. V Taklo, Characterization of hermetic wafer-level Cu-Sn SLID bonding, in: Electron. Syst. Technol. Conf., IEEE, Amsterdam, Netherlands, 2012: pp. 1–7. Doi:https://doi.org/10.1109/ESTC.2012.6542150.

  79. P. Borgesen, L. Yin, P. Kondos, Assessing the risk of Kirkendall voiding in Cu3Sn. Microelectron. Reliab. 51, 837–846 (2011). https://doi.org/10.1016/j.microrel.2010.11.014

    Article  CAS  Google Scholar 

  80. A.D. Smigelskas, E.O. Kirkendall, Zinc Diffusion in Alpha Brass. Trans. AIME. 171, 130–142 (1947)

    Google Scholar 

  81. A. Paul, M.J.H. Van Dal, A.A. Kodentsov, F.J.J. Van Loo, The Kirkendall Effect in Multiphase Diffusion. Acta Mater. 52, 623–630 (2004)

    Article  CAS  Google Scholar 

  82. K.E. Aasmundtveit, T. Luu, K. Wang, N. Hoivik, Void Formation in Cu – Sn Solid-Liquid Interdiffusion ( SLID ) Bonding, in: Eur. Microelectron. Packag. Conf., 2015: pp. 1–6. /https://ieeexplore.ieee.org/abstract/document/7390754.

  83. P. Borgesen, L. Yin, P. Kondos, D.W. Henderson, G. Servis, J. Therriault, J. Wang, K. Srihari, Sporadic Degradation in Board Level Drop Reliability - Those Aren’t All Kirkendall Voids!, in: Electron. Components Technol. Conf., 2007: pp. 136–146. Doi:https://doi.org/10.1109/ECTC.2007.373788.

  84. G. Ross, V. Vuorinen, M. Paulasto-kröckel, Void Formation in Cu-Sn Micro-Connects, in: Electron. Components Technol. Conf., IEEE, San Diego, CA, 2015: pp. 2193–2199. Doi:https://doi.org/10.1109/ECTC.2015.7159907.

  85. C. Hang, Y. Tian, R. Zhang, Phase transformation and grain orientation of Cu – Sn intermetallic compounds during low temperature bonding process. J. Mater. Sci. Mater. Electron. 24, 3905–3913 (2013). https://doi.org/10.1007/s10854-013-1337-5

    Article  CAS  Google Scholar 

  86. J. Yu, J.Y. Kim, Effects of residual S on Kirkendall void formation at Cu/Sn–3.5Ag solder joints. Acta Mater. 56, 5514–5523 (2008). https://doi.org/10.1016/j.actamat.2008.07.022

    Article  CAS  Google Scholar 

  87. L. Yin et. al, Controlling Cu Electroplating to Prevent Sporadic Voiding in Cu3Sn, in Electron. Components Technol. Conf., 2009: 406–414. Doi:https://doi.org/10.1109/ECTC.2009.5074046.

  88. M. Onishi, H. Fujibuchi, Reaction Diffusion in Cu Sn System. Trans. Japan Inst. Met. 16, 539–547 (1975). https://doi.org/10.2320/matertrans1960.16.539

    Article  CAS  Google Scholar 

  89. G. Ross, H. Xu, V. Vuorinen, M. Paulasto-kröckel, Void Formation in Cu-Sn SLID Bonding for MEMS, in: Electron. Syst. Technol. Conf., IEEE, Helsinki, 2014: pp. 1–3. Doi:https://doi.org/10.1109/ESTC.2014.6962843.

  90. J.Y. Kim, J. Yu, Effects of residual impurities in electroplated Cu on the Kirkendall void formation during soldering. Appl. Phys. Lett. 92, 2006–2009 (2008). https://doi.org/10.1063/1.2890072

    Article  CAS  Google Scholar 

  91. V.A. Baheti, P. Kumar, A. Paul, Effect of Au, Pd and Pt addition in Cu on the growth of intermetallic compounds and the Kirkendall voids in the Cu–Sn system. J. Mater. Sci. Mater. Electron. 28, 17014–17019 (2017). https://doi.org/10.1007/s10854-017-7624-9

    Article  CAS  Google Scholar 

  92. J. Chen, J. Yang, Y. Zhang, Z. Yu, P. Zhang, Effect of substrates on the formation of Kirkendall voids in Sn/Cu joints. Weld. World. 63, 751–757 (2019). https://doi.org/10.1007/s40194-019-00704-5

    Article  CAS  Google Scholar 

  93. J.Y. Song, J. Yu, T.Y. Lee, Effects of reactive diffusion on stress evolution in Cu-Sn films. Scr. Mater. 51, 167–170 (2004). https://doi.org/10.1016/j.scriptamat.2004.03.032

    Article  CAS  Google Scholar 

  94. T. Tian, K. Chen, A.A. Macdowell, D. Parkinson, Y. Lai, K.N. Tu, Quantitative X-ray microtomography study of 3-D void growth induced by electromigration in eutectic SnPb flip-chip solder joints. Scr. Mater. 65, 646–649 (2011). https://doi.org/10.1016/j.scriptamat.2011.07.002

    Article  CAS  Google Scholar 

  95. C.Y. Liu, J.T. Chen, Y.C. Chuang, L. Ke, S.J. Wang, Electromigration-induced Kirkendall voids at the Cu/Cu3Sn interface in flip-chip Cu/Sn/Cu joints. Appl. Phys. Lett. 90, 3–6 (2007). https://doi.org/10.1063/1.2714100

    Article  CAS  Google Scholar 

  96. L. Qu, H.T. Ma, H.J. Zhao, A. Kunwar, N. Zhao, In situ study on growth behavior of interfacial bubbles and its effect on interfacial reaction during a soldering process. Appl. Surf. Sci. 305, 133–138 (2014). https://doi.org/10.1016/j.apsusc.2014.03.003

    Article  CAS  Google Scholar 

  97. L. Yin, P. Borgesen, On the root cause of Kirkendall voiding in. J. Mater. Res. 26, 455–466 (2016). https://doi.org/10.1557/jmr.2010.47

    Article  CAS  Google Scholar 

  98. H. Li, R. An, C. Wang, B. Li, Suppression of void nucleation in Sn3.0Ag0.5Cu/CU solder joint by rapid thermal processing. Mater. Lett. 158, 252–254 (2015). https://doi.org/10.1016/j.matlet.2015.05.132

    Article  CAS  Google Scholar 

  99. S.H. Kim, J. Yu, Heat-treatment to suppress the formation of Kirkendall voids in Sn-3.5Ag/Cu solder joints. Mater. Lett. 106, 75–78 (2013). https://doi.org/10.1016/j.matlet.2013.05.019

    Article  CAS  Google Scholar 

  100. I. Panchenko, J. Grafe, M. Mueller, K.J. Wolter, “Effects of bonding pressure on quality of SLID interconnects”, in 2012 4th Electronic System-Integration Technology Conference. ESTC 2012, 1–7 (2012)

    Google Scholar 

  101. I. Panchenko, K. Croes, I. De Wolf, J. De Messemaeker, E. Beyne, K.J. Wolter, Degradation of Cu6Sn5 intermetallic compound by pore formation in solid-liquid interdiffusion Cu/Sn microbump interconnects. Microelectron. Eng. 117, 26–34 (2014). https://doi.org/10.1016/j.mee.2013.12.003

    Article  CAS  Google Scholar 

  102. X. Liu, S. He, H. Nishikawa, Low temperature solid-state bonding using Sn-coated Cu particles for high temperature die attach. J. Alloys Compd. 695, 2165–2172 (2017). https://doi.org/10.1016/j.jallcom.2016.11.064

    Article  CAS  Google Scholar 

  103. H.K. Kannojia, P. Dixit, Experimental investigations in the intermetallic and microvoid formation in sub-200 °C Cu–Sn bonding. J. Mater. Sci. Mater. Electron, 30, 16427–16438 (2019). https://doi.org/10.1007/s10854-019-02017-1

    Article  CAS  Google Scholar 

  104. H.K. Kannojia, P. Dixit, Void formation in Low-temperature Electroplated Cu-Sn stack for Hermetic Packaging, in: Electron. Packag. Technol. Conf., 2019: pp. 124–128. Doi:1109/EPTC47984.2019.9026664.

  105. A. Rautiainen, H. Xu, E. Österlund, J. Li, V. Vuorinen, M. Paulasto-Kröckel, Microstructural Characterization and Mechanical Performance of Wafer-Level SLID Bonded Au-Sn and Cu-Sn Seal Rings for MEMS Encapsulation. J. Electron. Mater. 44, 4533–4548 (2015). https://doi.org/10.1007/s11664-015-3929-8

    Article  CAS  Google Scholar 

  106. F. Forsberg, A. Lapadatu, G. Kittilsland, S. Martinsen, N. Roxhed, A.C. Fischer, G. Stemme, B. Samel, P. Ericsson, N. Hoivik, T. Bakke, M. Bring, T. Kvisteroy, A. Ror, F. Niklaus, CMOS-integrated Si/SiGe quantum-well infrared microbolometer focal plane arrays manufactured with very large-scale heterogeneous 3-D integration. IEEE J. Sel. Top. Quantum Electron. 21, 30–40 (2015). https://doi.org/10.1109/JSTQE.2014.2358198

    Article  CAS  Google Scholar 

  107. V. Vuorinen, G. Ross, H. Viljanen, J. Decker, M. Paulasto-Krockel, Process Integration and Reliability of Wafer Level SLID Bonding for Poly-Si TSV capped MEMS, in: Electron. Syst. Technol. Conf., Dresden, 2018: pp. 1–6. Doi:https://doi.org/10.1109/ESTC.2018.8546398.

  108. A. Kaiser, D. Kueck, P. Benkart, A. Munding, G.M. Prinz, A. Heittmann, H. Huebner, R. Sauer, E. Kohn, Concept for diamond 3-D integrated UV sensor. Diam. Relat. Mater. 15, 1967–1971 (2006). https://doi.org/10.1016/j.diamond.2006.07.012

    Article  CAS  Google Scholar 

  109. J.Y. Shih, Y.C. Chen, C.H. Chiu, Y.C. Hu, C.L. Lo, C.C. Chang, K.N. Chen, Advanced TSV-based crystal resonator devices using 3-d integration scheme with hermetic sealing. IEEE Electron Device Lett. 34, 1041–1043 (2013). https://doi.org/10.1109/LED.2013.2265335

    Article  CAS  Google Scholar 

  110. Z. Wu, J. Cai, Q. Wang, J. Wang, D. Wang, Wafer-Level Hermetic Package by Low-Temperature Cu/Sn TLP Bonding with Optimized Sn Thickness. J. Electron. Mater. 46, 6111–6118 (2017). https://doi.org/10.1007/s11664-017-5546-1

    Article  CAS  Google Scholar 

  111. R. Wieland, D. Bonfert, A. Klumpp, R. Merkel, L. Nebrich, J. Weber, P. Ramm, 3D Integration of CMOS transistors with ICV-SLID technology. Microelectron. Eng. 82, 529–533 (2005). https://doi.org/10.1016/j.mee.2005.07.052

    Article  CAS  Google Scholar 

  112. H.K. Kannojia, J. Arab, R. Kumar, J. Pednekar, P. Dixit, Formation of Through-Wafer 3-D interconnects in Fused Silica Substrates by Electrochemical Discharge Machining, in: Electron. Packag. Technol. Conf., 2019: pp. 253–257. Doi:https://doi.org/10.1109/EPTC47984.2019.9026625.

  113. Y. Lv, M. Chen, M. Cai, S. Liu, A reliable Cu-Sn stack bonding technology for 3D-TSV packaging. Semicond. Sci. Technol. 29, 025003 (2014). https://doi.org/10.1088/0268-1242/29/2/025003

    Article  CAS  Google Scholar 

  114. L.C. Shen, C.W. Chien, H.C. Cheng, C.T. Lin, Development of three-dimensional chip stacking technology using a clamped through-silicon via interconnection. Microelectron. Reliab. 50, 489–497 (2010). https://doi.org/10.1016/j.microrel.2009.10.012

    Article  CAS  Google Scholar 

  115. Y. Cao, W. Ning, L. Luo, Wafer-level package with simultaneous TSV connection and cavity hermetic sealing by solder bonding for MEMS device. IEEE Trans. Electron. Packag. Manuf. 32, 125–132 (2009). https://doi.org/10.1109/TEPM.2009.2021766

    Article  CAS  Google Scholar 

  116. Y.C. Hu, Y.C. Huang, P.T. Huang, S.L. Wu, H.C. Chang, Y.T. Yang, Y.H. You, J.M. Chen, Y.Y. Huang, Y.H. Lin, J.R. Duann, T.W. Chiu, W. Hwang, C. Te Chuang, J.C. Chiou, K.N. Chen, An Advanced 2.5-D Heterogeneous Integration Packaging for High-Density Neural Sensing Microsystem. IEEE Trans. Electron Devices. 64, 1666–1673 (2017). https://doi.org/10.1109/TED.2017.2660763

    Article  Google Scholar 

Download references

Funding

The authors like to acknowledge the financial support from the Industrial Research and Consulting Center (IRCC), Indian Institute of Technology (IIT) Bombay, India, under the seed grant project (RD/0515-IRCCSH0-010 (15IRCCSG002)). The authors are also thankful to the fabrication facility at the Center of Excellence in Nanoelectronics (CEN), IIT Bombay.

Author information

Authors and Affiliations

Authors

Contributions

HK planned and carried out the experiments and written the manuscript. PD secured the research funding, reviewed the experimental plan, analyzed the results and reviewed the manuscript.

Corresponding author

Correspondence to Pradeep Dixit.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The manuscript is prepared as per the researcher’s ethics.

Consent for publication

The authors provide their consent for publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kannojia, H.K., Dixit, P. A review of intermetallic compound growth and void formation in electrodeposited Cu–Sn Layers for microsystems packaging . J Mater Sci: Mater Electron 32, 6742–6777 (2021). https://doi.org/10.1007/s10854-021-05412-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05412-9

Navigation