Skip to main content
Log in

Experimental investigations in the intermetallic and microvoid formation in sub-200 °C Cu–Sn bonding

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper reports the intermetallic growth and microvoid formation in the Cu–Sn layers, which were annealed at low temperatures (sub-200°C) for durations varying from 120 to 1440 min. A 10 µm thick tin was electrodeposited on copper samples. Both Cu6Sn5 and Cu3Sn IMCs were formed and had a non-uniform scalloped shaped profile but with different scallops sizes. Void growth was studied at three different locations, i.e., the Cu–Cu3Sn interface, within the Cu3Sn, and at the Cu3Sn–Cu6Sn5 interface. The void size in these locations increased with increasing annealing durations and temperatures due to the coalescence of nearby voids. The void fraction at the Cu–Cu3Sn and Cu3Sn–Cu6Sn5 interfaces was observed to decrease, whereas the void fraction within the Cu3Sn IMC increased with increasing annealing durations. The largest voids were seen at the Cu–Cu3Sn interface, while the highest void fraction was found within the Cu3Sn IMC. The overall void size and void fractions for all experimental conditions were always smaller than 3 µm2 and 1.44 µm−1, respectively. The obtained results can be used in the hermetic packaging of MEMS devices performed at sub-200 °C. Processing at these low temperatures result in reduced thermo-mechanical stress and also eliminate the molten tin squeezing-out from the bonding zone, which is a known issue in Cu–Sn solid–liquid inter-diffusion bonding performed at temperature > 232 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.A. Schmidt, Proc. IEEE 86, 8 (1998)

    Article  Google Scholar 

  2. M. Esashi, J. Micromech. Microeng. 18, 7 (2008)

    Article  Google Scholar 

  3. R.R. Tummala, Fundamentals of Microsystems Packaging, 2nd edn. (McGraw-Hill Education, New York, 2001), pp. 580–610

    Google Scholar 

  4. S. Farrens, “Metal based wafer level packaging,” in Int. Wafer-Level Pack. Conf. (IWLPC), 2008, pp. 8–14

  5. Y. I. Kim, K. H. Yang, and W. S. Ire, in Annual Inter. Rel. Phy. Sym., 2 (2004)

  6. K.N. Tu, Acta Mater. 21, 4 (1973)

    Article  Google Scholar 

  7. M. Onishi, H. Fujibuchi, Trans. Japan Inst. Met. 16, 9 (1975)

    Article  Google Scholar 

  8. W. Tang, A. He, Q. Liu, D.G. Ivey, Trans. Nonferrous Met. Soc. China 20, 8 (2010)

    Google Scholar 

  9. H. Liu, K. Wang, K.E. Aasmundtveit, N. Hoivik, J. Electron. Mater. 41, 9 (2012)

    Google Scholar 

  10. T.T. Luu, A.N.I. Duan, K.E. Aasmundtveit, N. Hoivik, J. Electron. Mater. 42, 12 (2013)

    Article  Google Scholar 

  11. B.S. Lee, S.K. Hyun, J.W. Yoon, J. Mater. Sci.: Mater. Electron. 28, 11 (2017)

    Google Scholar 

  12. T. Laurila, V. Vuorinen, J.K. Kivilahti, Mater. Sci. Eng. R Rep. 49, 1–60 (2005)

    Article  Google Scholar 

  13. A. Munding, H. Hubner, A. Kaiser, S. Penka, P. Benkart, E. Kohn, Wafer Level 3-D ICs Process Technology (Springer, New York, 2008), p. 131

    Google Scholar 

  14. C. Yuhan, L. Le, J. Semicond. 30, 8 (2009)

    Article  Google Scholar 

  15. B. Balakrisnan, C.C. Chum, M. Li, Z. Chen, T. Cahyadi, J. Electron. Mater. 32, 3 (2003)

    Article  Google Scholar 

  16. H. Liu, G. Salomonsen, K. Wang, K.E. Aasmundtveit, N. Hoivik, IEEE Trans. Componen. Packag. Manuf. Technol. 1, 9 (2011)

    Google Scholar 

  17. S. Bader, W. Gust, H. Hieber, Acta Mater. Mater. 43, 1 (1995)

    Article  Google Scholar 

  18. A. Duan, T. Luu, K. Wang, K. Aasmundtveit, N. Hoivik, J. Micromech. Microeng. 25(9), 097001 (2015)

    Article  Google Scholar 

  19. C. Hang, Y. Tian, R. Zhang, J. Mater. Sci.: Mater. Electron. 24, 10 (2013)

    Google Scholar 

  20. H.K. Kannojia, S.K. Sharma, P. Dixit, J. Electron. Mater. 47, 12 (2018)

    Article  Google Scholar 

  21. J.F. Li, P.A. Agyakwa, C.M. Johnson, Acta Mater. 59(3), 1198–1211 (2011)

    Article  Google Scholar 

  22. N. Zhao, Y. Zhong, M.L. Huang, H.T. Ma, W. Dong, Sci. Rep. 5, 131491 (2015)

    Google Scholar 

  23. G. Ross, V. Vuorinen, M. Paulasto-Kröckel, J. Alloys Compd. 677, 127–138 (2016)

    Article  Google Scholar 

  24. G. Ghosh, M. Asta, J. Mater. Res. 20, 11 (2005)

    Article  Google Scholar 

  25. K. Nogita, C.M. Gourlay, S.D. Mcdonald, Y.Q. Wu, J. Read, Q.F. Gu, Scr. Mater. 65, 10 (2011)

    Article  Google Scholar 

  26. K.N. Tu, R.D. Thompson, Acta Mater. 30, 5 (1982)

    Article  Google Scholar 

  27. M.S. Park, S.L. Gibbons, R. Arroyave, J. Electron. Mater. 43, 7 (2014)

    Google Scholar 

  28. L. Yin, G. Electric, J. Mater. Res. 26, 3 (2016)

    Google Scholar 

  29. G. Ross, X. Tao, M. Broas, N. Mäntyoja, V. Vuorinen, A. Graff, F. Altmann, M. Petzold, M. Paulasto-kröckel, J. Electron. Mater. Lett. 13, 4 (2017)

    Google Scholar 

  30. K. Chen, D. Wang, H. Ling, A. Hu, M. Li, W. Zhang, L. Cao, J. Mater. Sci.: Mater. Electron. 29, 22 (2018)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from Industrial Research and Consultancy Centre (IRCC), IIT Bombay, under the research Grant 15IRCCSG002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep Dixit.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kannojia, H.K., Dixit, P. Experimental investigations in the intermetallic and microvoid formation in sub-200 °C Cu–Sn bonding. J Mater Sci: Mater Electron 30, 16427–16438 (2019). https://doi.org/10.1007/s10854-019-02017-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02017-1

Navigation