Skip to main content
Log in

Fracture toughness of Cu-Sn intermetallic thin films

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Intermetallic compounds (IMCs) are formed as a result of interaction between solder and metallization to form joints in electronic packaging. These joints provide mechanical and electrical contacts between components. The knowledge of fracture strength of the IMCs will facilitate predicting the overall joint property, as it is more disposed to failure at the joint compared to the solder because of its brittle characteristics. The salient feature of this paper is the measurement of the fracture toughness and the critical energy-release rate of Cu3Sn and Cu6Sn5 intermetallic thin films, which is the result of the interaction between Sn from the solder and Cu from the metallization. To achieve the objective, a controlled buckling test was used. A buckling test in the current work refers to one that displays large transverse displacement caused by axial compressive loading on a slender beam. The stress and strain along the beam can be easily calculated by the applied displacement. Fracture-toughness values of Cu3Sn and Cu6Sn5 are 2.85 MPa √m ± 0.17 MPa √m and 2.36 MPa √m ± 0.15 MPa √m, respectively. Corresponding critical energy-release rate values are 65.5 J/m2 ± 8.0 J/m2 and 55.9 J/m2 ± 7.3 J/m2, respectively. The values obtained were much higher than the ones measured in bulk intermetallic samples but correlated well with those values obtained from conventional fracture-toughness specimens when fracture was confined within the intermetallic layers. Hence, the controlled buckling test is a promising fast and effective way to elucidate mechanical properties of thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.S. Stoloff, C.T. Liu, and S.C. Deevi, Intermetallics 8, 1313 (2000).

    Article  CAS  Google Scholar 

  2. R.W. Cahn, Intermetallics 6, 563 (1998).

    Article  CAS  Google Scholar 

  3. J.K. Kim, M.S. Suk, and H.Y. Kwon, Surf. Coating Technol. 82, 23 (1996).

    Article  CAS  Google Scholar 

  4. R.E. Pratt, E.I. Stromwold, and D.J. Quesnal, J. Electron. Mater. 23, 375 (1994).

    CAS  Google Scholar 

  5. J. Sigelko, S. Choi, K.N. Subramanian, J.P. Lucas, and T.R. Bieler, J. Electron. Mater. 28, 1184 (1999).

    CAS  Google Scholar 

  6. Y.C. Chan, A.C.K. So, and J.K.L. Lai, Mater. Sci. Eng. B 55, 5 (1998).

    Article  Google Scholar 

  7. R.J. Fields, S.R. Low III, and G.K. Lucey, Jr., The Metal Science of Joining, ed. M.J. Cieslak, J.H. Perepezko, S. Kang, and M.E. Glicksman (Warrendale, PA: TMS, 1992), pp. 165–173.

    Google Scholar 

  8. K. Nakajima, A. Isogai, and Y. Taga, Jpn. J. Appl. Phys. Suppl. 2, 309 (1974).

    Google Scholar 

  9. R.P. Vinci and J.J. Vlassak, Ann. Rev. Mater. Sci. 26, 432 (1996).

    Article  Google Scholar 

  10. D.S. Campbell, Handbook of Thin Film Technology, ed. L.I. Maissel and R. Glang (New York: McGraw-Hill, 1971).

    Google Scholar 

  11. A.J. Griffin, F.R. Brotzen, and C.F. Dunn, Thin Solid Films 220, 265 (1992).

    Article  CAS  Google Scholar 

  12. F.R. Brotzen, Int. Mater. Rev. 39, 24 (1994).

    CAS  Google Scholar 

  13. K. Hashimoto, M. Sakane, M. Ohnami, and T. Yoshida, J. Soc. Mater. Sci. Jpn. 43, 703 (1994).

    Google Scholar 

  14. W.N. Sharpe, Jr., B. Yuan, and R.L. Edwards, J. Mircomech. Sys. 6, 193 (1997).

    Article  Google Scholar 

  15. O.R. Shojaei and A. Karimi, Thin Solid Films 332, 202 (1998).

    Article  CAS  Google Scholar 

  16. L. Gan, B.B. Nissan, and A.B. David, Thin Solid Films 290, 362 (1996).

    Article  Google Scholar 

  17. V. Navratil and V. Stejskalova, Phys. Status Solidi, A157, 345 (1996).

    Google Scholar 

  18. W.D. Nix, Mater. Sci. Eng. A234, 37 (1997).

    Google Scholar 

  19. S. Makarov, E. Chilla, and H.J. Frohlich, IEEE 1995, Ultrasonics Symp. Proc. (Piscataway, NJ: IEEE, 1995), pp. 357–360.

    Book  Google Scholar 

  20. K.N. Tu, Mater. Chem. Phys. 46, 217 (1996).

    Article  CAS  Google Scholar 

  21. J.W. Hutchinson, Mechanics of Thin Films and Multilayers (Lyngby, Denmark: Technical University of Denmark, 1996).

    Google Scholar 

  22. Z. Chen, B. Cotterell, W. Wang, E. Guenther, and S.J. Chua, Thin Solid Films 394, 202 (2001).

    Article  CAS  Google Scholar 

  23. S.J. Britvec, The Stability of Elastic Systems (New York: Pergamon Press, 1973).

    Google Scholar 

  24. J.H. Westbrook and R.L. Fleischer, eds., Structural Applications of Intermetallic Compounds (New York: Wiley, 2000).

    Google Scholar 

  25. B. Cotterell and Z. Chen, Int. J. Fract. 104, 169 (2000).

    Article  Google Scholar 

  26. J.W. Hutchinson and Z. Suo, Adv. Appl. Mech. 29, 63 (1992).

    Article  Google Scholar 

  27. K.S. Siow and M. Manoharan, Proc. 1st IPC/SMTA Electronics Assembly Expo (Providence, RI: Institute PC and Surface Mount Technology Association, 1998), pp. S19-3-1–S19-3-8.

    Google Scholar 

  28. D.R. Frear and P.T. Vianco, Metall. Mater. Trans. A 25A, 1509 (1994).

    CAS  Google Scholar 

  29. R.E. Pratt and D.J. Quesnel, The Metal Science of Joining, ed. M.J. Cielak, J.H. Perepezko, and M.E. Glicksman (Warrendale, PA: TMS, 1992), pp. 201–210.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balakrisnan, B., Chum, C.C., Li, M. et al. Fracture toughness of Cu-Sn intermetallic thin films. J. Electron. Mater. 32, 166–171 (2003). https://doi.org/10.1007/s11664-003-0188-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-003-0188-x

Key words

Navigation