Skip to main content

Advertisement

Log in

The main role of bismuth in controlling linear and nonlinear optical, electronic and electrical parameters of Se–Ge–Bi thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A widespread analysis of the structural, optical, electronic and electrical properties of Se80Ge20-xBix with (x = 0, 5, 10, 15 and 20 at.%) glasses were carried out. The bulk materials of the studied films have been prepared utilizing the usual melt quench procedure. Thus, the thin film has been deposited under a vacuum of 10–5 Torr on cleaned glass substrates by thermal evaporation. The supreme purpose of this research is to highlight the role of adding bismuth to the films studied as a regulator and controller for the linear and nonlinear parameters. The thickness of the studied thin films has been mathematically determined by the methods of Swanepoel. Using logarithmic functions, it has been proven that the electron transport mechanism between the valence and conduction bands is an allowed indirect transition. Linear optical parameters, dielectric constants and also dispersion parameters have been calculated. The energy-loss functions (VELF and SELF) were discussed. The effect of Bi concentration in the studied thin films on the linear and nonlinear optical properties is determined based on the optical measurements (transmittance and reflectance spectra). The optical bandgap decreases with increasing Bi concentration; while the tail energy portrays an opposite behavior. Linear optical and electrical parameters are found significantly affected by the change of Bi concentration. In contrast, the nonlinear optical parameters have been computed utilizing (H. Ticha and L. Tichy) and Boling formula. Energies of Plasmon, Penn and Fermi and the electronic polarizability have been determined. Furthermore, the DC electrical conductivity has been studied as a function of both temperature in the thermal range from 300 to 500 K and also Bi concentration. In the extended and hopping regions, the activation energy and pre-exponential factor were extracted from the slopes and intercepts of straight lines. It has been found that increasing Bi content is controlled the electrical parameters and reduces the activation energies in the regions of the extended and the hopping states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. T. Rajagopalan, G.B. Reddy, J. Mater. Sci.: Mater. 9, 133–137 (1998)

    CAS  Google Scholar 

  2. A.M. Andriech, V.V. Ponimar, V.L. Smirnov, A.V. Mironos, Sov. J. Quantum Electron. 16, 721 (1986)

    Article  Google Scholar 

  3. J. Cofmenero, J.M. Barandiaran, J. Non-Cryst. Solids. 30, 263 (1979)

    Article  Google Scholar 

  4. J.A. Savage, J. Non-Cryst. Solids. 47, 101 (1982)

    Article  CAS  Google Scholar 

  5. W.A. King, A.G. Clare, W.C. Lacourse, SJ. Non-Cryst. Solids. 181, 231 (1995)

    Article  CAS  Google Scholar 

  6. A.M. Flank, D. Bazin, H. Dexpert, P. Lagarde, C. Hervo, J.Y. Barraud, J. Non-Cryst. Solids. 91, 306–314 (1987)

    Article  CAS  Google Scholar 

  7. A. Elshafie, A. Abdel-All, Phys. B 269, 69–78 (1999)

    Article  CAS  Google Scholar 

  8. S.A. Fayek, M.M. Ibrahim, Arab J. Nucl. Sci. Appl. 46, 142 (2013)

    Google Scholar 

  9. M. Mitkova, M.N. Kozicki, H.C. Kim, T.L. Alford, J. Non-Cryst, Solids. 552, 338–340 (2004)

    Google Scholar 

  10. L. Koudelka, L. Tichy, M. Pisarcik, J. Mater. Sci. Lett. 11, 1060–1062 (1992)

    Article  CAS  Google Scholar 

  11. A. Mun, F.L. Cumbrera, R. Ma, Thin Solid Films 186, 37–46 (1990)

    Article  Google Scholar 

  12. R.A. Street, N.F. Mott, Phys. Rev. Lett. 35, 1293 (1975)

    Article  CAS  Google Scholar 

  13. M. Kastner, Phys. Rev. Lett. 37, 1504 (1976)

    Article  CAS  Google Scholar 

  14. A.I. Gubanov, Sov. Phys. Solid State. 3, 1694–1697 (1962)

    Google Scholar 

  15. N.F. Mott, Philos. Mag. 19, 835–852 (1969)

    Article  CAS  Google Scholar 

  16. N. Tohge, H. Matsuo, T. Minami, J. Non-Cryst. Solids. 95, 809–816 (1987)

    Article  Google Scholar 

  17. N. Tohge, K. Kanda, T. Minami, J. Ceram. Soc. Jpn. 94, 226 (1986)

    CAS  Google Scholar 

  18. N. Tohge, K. Kanada, T. Minami, Appl. Phys. Lett. 48, 1739 (1986)

    Article  CAS  Google Scholar 

  19. P. Nagels, L. Tichy, A. Triska, H. Ticha, J. Non-Cryst. Solids. 59–60, 1015 (1983)

    Article  Google Scholar 

  20. J.C. Philips, Phys. Rev. B. 36, 4265 (1987)

    Article  Google Scholar 

  21. J. Sotiropoulos, W. Fuhs, J. Non-Cryst, Solids. 114, 97–99 (1989)

    CAS  Google Scholar 

  22. D.C. Jiles, CRC Press, New York (2001)

  23. J. Tauc, ed., Springer, Berlin (2012)

  24. J. Johnson, T. Ralph, R.K. Quinn, J. Appl. Phys. 43, 3875–3877 (1972)

    Article  CAS  Google Scholar 

  25. E. Mytilineou, B.S. Chao, D. Papadimitriou, J. Non-Cryst, Solids. 195, 279–285 (1996)

    CAS  Google Scholar 

  26. M.M. Hafiz, A.A. Othman, M.M. El-Nahass, A.T. Al-Motasem, Radiat. Eff. Defects Solids. 162, 669–676 (2007)

    Article  CAS  Google Scholar 

  27. A. Aparimita, C. Sripan, R. Ganesan, S. Jena, R. Naik, Phase Transit. 91, 872–886 (2018)

    Article  CAS  Google Scholar 

  28. O. Matsuda et al., J. Non-Cryst. Solids. 198, 688–691 (1996)

    Article  Google Scholar 

  29. J.C. Manifacier, J. Gasiot, J.P. Fillard, J. Phys. E 9, 1002 (1976)

    Article  CAS  Google Scholar 

  30. R. Swanepoel, J. Phys. E 16, 1214 (1983)

    Article  CAS  Google Scholar 

  31. E.R. Shaaban, Mater. Chem. Phys. 100, 411–417 (2006)

    Article  CAS  Google Scholar 

  32. J. Pankove, I, Optical Processes in Semiconductors (Dover Publications, New York, 1975).

    Google Scholar 

  33. E.R. Shaaban, N. Afify, A. El-Taher, J. Alloys Compd. 482, 400–404 (2009)

    Article  CAS  Google Scholar 

  34. J.E. Enderby and A. C. Barnes 159, 156 (1974)

  35. J. Tauc, R. Grigorovici, A. Vancc, Phys. Status Solidi B. 15, 627–637 (1966)

    Article  CAS  Google Scholar 

  36. E.A. Davis, N.F.F. Mott, Philos. Mag. 22, 0903–0922 (1970)

    Article  CAS  Google Scholar 

  37. A.K. Ray, C.A. Hogarth, J. Phys. D 23, 458 (1990)

    Article  CAS  Google Scholar 

  38. I.S. Yahia, G.F. Salem, J. Iqbal, F. Yakuphanoglu, Phys. B 511, 54–60 (2017)

    Article  CAS  Google Scholar 

  39. J.M. Gonzalez-Leal, R. Prieto-Alcon, J.A. Angel, E. Marquez, J. Non-Cryst. Solids. 315, 134–143 (2003)

    Article  CAS  Google Scholar 

  40. J.B. Ramirez-Malo, E. Marquez, C. Corrales, P. Villares, R. Jimenez-Garay, Mater Sci Eng B 25, 53–59 (1994)

    Article  CAS  Google Scholar 

  41. E.K. Shokr, M. Wakkad, J. Mater. Sci. 27, 1197–1201 (1992)

    Article  CAS  Google Scholar 

  42. S.H. Wemple, M. DiDomenico Jr., Phys. Rev. B. 3, 1338 (1971)

    Article  Google Scholar 

  43. S.H. Wemple, Phys. Rev. B. 7, 3767 (1973)

    Article  CAS  Google Scholar 

  44. M.M. Malik, M. Zulfequar, A. Kumar, M. Husain, J. Condens. Matter Phys. 4, 8331 (1992)

    Article  CAS  Google Scholar 

  45. E.R. Shaaban, M.Y. Hassaan, M.G. Moustafa, A. Qasem, A.M.A. Gomaa, Optik. 186, 275–287 (2019)

    Article  CAS  Google Scholar 

  46. A. Qasem, M.Y. Hassaan, M.G. Moustafa, M.A. Hammam, H.Y. Zahran, I.S. Yahia, E.R. Shaaban, Opt. Mater. 109, 110257 (2020)

    Article  CAS  Google Scholar 

  47. P.B. Ambika, Barman. Phys. B 405, 822 (2010)

    Article  CAS  Google Scholar 

  48. N.F. Mott, E.A. Davis, R.A. Street, Philos. Mag. 32, 961–996 (1975)

    Article  CAS  Google Scholar 

  49. K. Tanaka, Thin Solid Films 66, 271–279 (1980)

    Article  CAS  Google Scholar 

  50. E.R. Shaaban, M.Y. Hassaan, M.G. Moustafa, A. Qasem, G.A.M. Ali, and E.S. Yousef, Acta Phys. Pol. A. 136, (2019)

  51. A. Gadalla, F.A. Anas, A. Qasem, E.R. Shaaban, Indian J. Phys (2020). https://doi.org/10.1007/s12648-020-01848-7

    Article  Google Scholar 

  52. M.M. El-Nahass, A.M. Farag, K.F. Abd El-Rahman, A.A.A. Darwish, Opt Laser Technol. 37, 513–523 (2005)

    Article  CAS  Google Scholar 

  53. M.M. El-Nahass, H.S. Soliman, A.A. Hendi, Aust. J. Basic Appl. Sci. 5, 145–156 (2011)

    CAS  Google Scholar 

  54. H. Ticha, L. Tichy, J. Optoelectron. Adv. Mater. 4, 381–386 (2002)

    CAS  Google Scholar 

  55. M. Alzaid, A. Qasem, E.R. Shaaban, N.M.A. Hadia, Opt. Mater. 110, 110539 (2020)

    Article  CAS  Google Scholar 

  56. N.L. Boling, A. Glass, A. Owyoung, IEEE J. Quantum Electron. 14, 601–608 (1987)

    Article  Google Scholar 

  57. V. Kumar, B.S.R. Sastry, J. Phys. Chem. Solids. 66, 99–102 (2005)

    Article  CAS  Google Scholar 

  58. J. Phillips, C (Academic Press, New York, 1973).

    Google Scholar 

  59. V.P. Gupta, V.K. Srivastava, P.N.L. Gupta, J. Phys. Chem. Solids. 42, 1079–1085 (1981)

    Article  CAS  Google Scholar 

  60. R.R. Reddy, Y. Nazeer Ahammed, K. Rama Gopal, P. Abdul Azeem, T.V.R. Rao, P. Mallikarjuna Reddy, Opt. Mater. 14, 355–358 (2000)

    Article  CAS  Google Scholar 

  61. J.A. Duffy, J. Phys. C Solid State Phys. 13, 2979 (1980)

    Article  CAS  Google Scholar 

  62. R.L. Sutherland, D.G. Mclean, S. Kikparik, Handbook on Non-Linear Optics, 2nd edn. (Marcel Dekkar inc, New York, 2003).

    Book  Google Scholar 

  63. E.R. Shaaban, M.Y. Hassaan, M.G. Moustafa, Appl. Phys. A. 126, 34 (2020)

    Article  CAS  Google Scholar 

  64. W.K. Njoroge, H.-W. Wöltgens, M. Wuttig, J. Vac. Sci. Technol. 20, 230–233 (2002)

    Article  CAS  Google Scholar 

  65. M. Wimmer, M. Kaes, C. Dellen, M. Salinga, Front. Phys. 2, 75 (2014)

    Article  Google Scholar 

  66. M.I. Abd-Elrahman, M.M. Hafiz, A. Qasem, M.A. Abdel-Rahim, Appl. Phys. A. 122, 772 (2016)

    Article  CAS  Google Scholar 

  67. H. Fritzsche, M. Kastner, Philos. Mag. 37, 285–292 (1978)

    Article  CAS  Google Scholar 

  68. D. Adler, J. Non-Cryst. Solids. 35, 819–824 (1980)

    Article  Google Scholar 

  69. P. Paufler, and S R. Elliott, 1238 (1984)

  70. M. Sudha, and A. Giridhar, J. Mater. Sci. 29, 3837–3842 (1994)

    Google Scholar 

  71. M. M. Ahmed, C. A. Hogarth, and M. N. Khan, J. Mater. Sci. 19, 4040–4044 (1984)

    Article  CAS  Google Scholar 

  72. M.A. Majeed Khan, M. Zulfequar, M. Husain, Phys. B 322, 1–11 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their appreciation to the Deanship of Scientific Research at King Faisal University for funding this work through research groups program under Grant No. 17122004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ammar Qasem.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naim, A.F.A.L., Farha, A.H., Qasem, A. et al. The main role of bismuth in controlling linear and nonlinear optical, electronic and electrical parameters of Se–Ge–Bi thin films. J Mater Sci: Mater Electron 32, 6866–6882 (2021). https://doi.org/10.1007/s10854-021-05392-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05392-w

Navigation