Skip to main content
Log in

Effect of antimony (Sb) addition on the linear and non-linear optical properties of amorphous Ge–Te–Sb thin films

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Non-crystalline thin films of Ge20Te80−xSbx (x = 0, 2, 4, 6, 10) systems were deposited on glass substrate using thermal evaporation technique. The optical coefficients were accurately determined by transmission spectra using Swanepoel envelope method in the spectral region of 400–1600 nm. The refractive index was found to increase from 2.38 to 2.62 with the corresponding increase in Sb content over the entire spectral range. The dispersion of refractive index was discussed in terms of the single oscillator Wemple–DiDomenico model. Tauc relation for the allowed indirect transition showed decrease in optical band gap. To explore non-linearity, the spectral dependence of third order susceptibility of a-Ge–Te–Sb thin films was evaluated from change of index of refraction using Miller’s rule. Susceptibility values were found to enhance rapidly from 10−13 to 10−12 (esu), with the red shift in the absorption edge. Non-linear refractive index was calculated by Fourier and Snitzer formula. The values were of the order of 10−12 esu. At telecommunication wavelength, these non-linear refractive index values showed three orders higher than that of silica glass. Dielectric constant and optical conductivity were also reported. The prepared Sb doped thin films on glass substrate with observed improved functional properties have a noble prospect in the application of nonlinear optical devices and might be used for a high speed communication fiber. Non-linear parameters showed good agreement with the values given in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R Jiang, B Li, C Fang, J Wang Adv. Mat. 26 5274 (2014)

    Article  Google Scholar 

  2. J L Adam, X Zhang Chalcogenide glasses Preparation, Properties and Applications (Oxford: Woodhead Publishing) (2014)

    Google Scholar 

  3. Z L Sámson, S C Yen, F Kevin, K Knight, S Li, WH Daniel, D P Tsai, N I Zheludev Physica Status Solidi (RRL)-Rapid Res. Lett. 4 274 (2010)

    Google Scholar 

  4. A Lovalskiy, J Cech, M Vlcek MEMS MOEMS 84 043012 (2009)

    Article  Google Scholar 

  5. D C Sati, S C Katyal, P Sharma IEEE Trans. Electron. Devices 63 698 (2016)

    Article  ADS  Google Scholar 

  6. R Tintu, V P N Nampoori, P Radhakrishanan, S Thomas J. Phys. D: Appl. Phys. 44 025101 (2011)

    Article  ADS  Google Scholar 

  7. I Sharma, M Maheshwari Mat. Sci. Pol. 32 661 (2014)

    Google Scholar 

  8. N Sharma, S Sharda, S C Katyal, V Sharma, P. Sharma Electron. Mater. Lett. 10 101 (2014)

    Article  Google Scholar 

  9. E R Shaaban Philos. Mag. 88 781 (2008)

    Article  ADS  Google Scholar 

  10. M H R Lankhorst, B W S M M Ketelaars, R A M Wolters Nat. Mater. 4 347 (2005)

    Article  ADS  Google Scholar 

  11. D H Kang, D H Ahn, K B Kim, J F Webb, K W Yi J. Appl. Phys. 94 3536 (2003)

    Article  ADS  Google Scholar 

  12. Z Z Ying, C Fen, L S Bin, W Y Hui, S Xiang, D S Xun, N Q Hua Chin. Phys. B 24(6) 066801 (2015)

    Article  ADS  Google Scholar 

  13. J S Sanghera, C M Florea, L Shaw, P Pureza, V Q Nguyen, M Bashkansky, Z Dutton, I D Aggarwal J. Non-Cryst. Solids 354 462 (2008)

    Google Scholar 

  14. A C Wright, J. Non-Cryst. Solids 401 4 (2014)

    Google Scholar 

  15. I Sharma, P Kumar, S K Tripathi Phase Transit. (2016). doi:10.1080/01411594.2016.1260720

    Google Scholar 

  16. R. Swanepoel J. Phys. E: Sci. Instrum. 16 1214 (1983)

    Article  ADS  Google Scholar 

  17. J C Manifacier, J Gasiot, J P Fillard J. Phys. E: Sci. Instrum. 9 1002 (1976)

    Article  ADS  Google Scholar 

  18. I Sharma, S K Tripathi, P B Barman Appl. Surface Sci. 255 2791 (2008)

    Article  ADS  Google Scholar 

  19. K A Aly, H H Amer, A Dahshan Mater. Chem. Phys. 113 690 (2009)

    Article  Google Scholar 

  20. I Sharma, S K Tripathi, P B Barman J. Phys. D: Appl. Phys. 40 4460 (2007)

    Article  ADS  Google Scholar 

  21. H E Kondakci, M Yaman, O Koylu, A Dana, M Bayindir Appl. Phys. Lett. 94 111110 (2009)

    Article  ADS  Google Scholar 

  22. I Sharma, S K Tripathi, P B Barman Philos. Mag. 88 3081 (2008)

    Article  ADS  Google Scholar 

  23. E Stephen The Physics and Chemistry of Solids (New York: Wiley) (1998)

    Google Scholar 

  24. E Márquez, J M González-Leal, A M Bernal-Oliva, R Jiménez-Garay, T Wagner, J. Non-Cryst. Solids 354 503 (2008)

    Google Scholar 

  25. P Sharma, I Sharma, S C Katyal J. Appl. Phys. 105 053509 (2009)

    Article  ADS  Google Scholar 

  26. D Lezal, J. Optoelectron. Adv. Mater. 5 23 (2003)

    Google Scholar 

  27. S H Wemple, M Di-Domenico Jr Phys. Rev. B 3 1338 (1971)

    Article  ADS  Google Scholar 

  28. S H Wemple Phys. Rev. B 7 3767 (1973)

    Article  ADS  Google Scholar 

  29. K Tanaka Thin Solid Films 66 271 (1980)

    Article  ADS  Google Scholar 

  30. F A Jenkins, H E White Fundamentals of Optics (New York: Tata McGraw-Hill Education) (1957)

    MATH  Google Scholar 

  31. J T Fournier, E Snitzer J. Quantum Electron. 10 473 (1974)

    Article  ADS  Google Scholar 

  32. H Ticha, L Tichy J. Optoelectron. Adv. Mater. 4 381 (2002)

    Google Scholar 

  33. I Sharma, S K Tripathi, P. B. Barman J. Appl. Phys. 110 043108 (2011)

    Article  ADS  Google Scholar 

  34. H Nasu, Y Ibara, K Kubodera J. Non-Cryst. Solids 110 229 (1989)

    Article  ADS  Google Scholar 

  35. J M Harbold, F Ö Ilday, F W Wise, J S Sanghera, V Q Nguyen, L B Shaw, I D Aggarwal Opt. Lett. 27(2) 119 (2002)

    Article  ADS  Google Scholar 

  36. J M Harbold, F O Ilday, F W Wise, and B G Aitken IEEE Photon. Technol. Lett. 14 822 (2002)

    Article  ADS  Google Scholar 

  37. T G Moss Optical Properties of Semi-conductors (New York: Butterworths Scientific Publications) (1959)

    Google Scholar 

  38. N M Amer, W B Jackson, Semicond. Semimet. B 21 83 (1984)

    Article  Google Scholar 

  39. J Tauc Amorphous and Liquid Semiconductors (New York: Plenum Press) (1979)

    Google Scholar 

  40. M Kitao, H Akao, T Ishikawa, S. Yamada Phys. Stat. Sol. (a) 64 493 (1981)

    Article  ADS  Google Scholar 

  41. N F Mott and E A Davis, Electronics Processing in Non-crystalline Materials (Oxford: Clarendon) (1971)

    Google Scholar 

  42. V Pamukchieva, Z Levi, E. Savova Semicond. Sci. Technol. 13 1309 (1998)

    Article  ADS  Google Scholar 

  43. M M Wakkad, E Kh Shokr, S H Mohamed J. Non-Cryst. Solids 265 157 (2000)

    Article  ADS  Google Scholar 

  44. J I Pankove Optical Processes in Semiconductors: Perturbation of Semiconductors by External Parameters (Dover: New York) (1975)

    Google Scholar 

  45. K Shimakawa, S Narushima, H Hosono, H Kawazoe Philos. Mag. Lett. 79 755 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Kaur, J., Tripathi, S.K. et al. Effect of antimony (Sb) addition on the linear and non-linear optical properties of amorphous Ge–Te–Sb thin films. Indian J Phys 91, 1503–1511 (2017). https://doi.org/10.1007/s12648-017-1053-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-017-1053-8

Keywords

PACS Nos.

Navigation