Skip to main content
Log in

Assembly of the hierarchical MnO2@NiCo2O4 core–shell nanoflower for supercapacitor electrodes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) hierarchical MnO2@NiCo2O4 core–shell nanoflower in situ grown on the Ni-foam substrate has successfully prepared via a two-step hydrothermal process and calcination treatment, and the related properties of electrode materials for supercapacitors have also been investigated. The prepared samples were characterized by scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy, cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy (EIS). When the current density was 0.25 A/g, the specific capacitance of the MnO2@NiCo2O4 composite material could reach 634.37 F/g. The specific capacitance was 83.1% retention after 3000 cycles at 1 A/g, and the initial capacitance retention rate was 96.3%, showing good capacitance stability. It opens up a new way for the development of high-performance supercapacitor electrode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Bhujun, M.T.T. Tan, A.S. Shanmugam, Evaluation of aluminium doped spinel ferrite electrodes for supercapacitors. Ceram. Int. 42, 6457–6466 (2016). https://doi.org/10.1016/j.ceramint.2015.12.118

    Article  CAS  Google Scholar 

  2. M. Kim, I. Oh, J. Kim, Carbonization temperature dependence of pore structure of silicon carbide spheres and their electrochemical capacitive properties as supercapacitors. Ceram. Int. 42, 3947–3958 (2016). https://doi.org/10.1016/j.ceramint.2015.11.063

    Article  CAS  Google Scholar 

  3. Y. Ouyang, X. Xia, H. Ye, L. Wang, X. Jiao, W. Lei, Q. Hao, Three-dimensional hierarchical structure ZnO@C@NiO on carbon cloth for asymmetric supercapacitor with enhanced cycle stability. ACS Appl. Mater. Interfaces 10, 3549–3561 (2018). https://doi.org/10.1021/acsami.7b16021

    Article  CAS  Google Scholar 

  4. X. Huang, Z. Zhang, H. Li, H. Wang, T. Ma, In-situ growth of nanowire WO2.72 on carbon cloth as a binder-free electrode for flexible asymmetric supercapacitors with high performance. J. Energy Chem. 29, 58–64 (2019). https://doi.org/10.1016/j.jechem.2018.01.024

    Article  Google Scholar 

  5. T. Bi, H. Fang, J. Jiang, X. He, X. Zhen, H. Yang et al., Enhance supercapacitive performance of MnO2/3D carbon nanotubes-graphene as a binder-free electrode. J. Alloys Compd. 787, 759–766 (2019). https://doi.org/10.1016/j.jallcom.2019.02.117

    Article  CAS  Google Scholar 

  6. C. Jiang, Z. Zou, Waste polyurethane foam filler-derived mesoporous carbons as superior electrode materials for EDLCs and Zn-ion capacitors. Diam. Relat. Mater. 101, 107603 (2020). https://doi.org/10.1016/j.diamond.2019.107603

    Article  CAS  Google Scholar 

  7. N. Zhang, J. Sun, D. Jiang, T. Feng, Q. Li, Anchoring zinc oxide quantum dots on functionalized multi walled carbon nanotubes by covalent coupling. Carbon 47, 1214–1219 (2009). https://doi.org/10.1016/j.carbon.2008.12.044

    Article  CAS  Google Scholar 

  8. S.-M. Li, Y.-S. Wang, S.-Y. Yang, C.-H. Liu, K.-H. Chang, H.-W. Tien, N.-T. Wen, C.-C.M. Ma, C.-C. Hu, Electrochemical deposition of nanostructured manganese oxide on hierarchically porous graphene–carbon nanotube structure for ultrahigh-performance electrochemical capacitors. J. Power Sources 225, 347–355 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.037

    Article  CAS  Google Scholar 

  9. L. Tian, K. Xia, S. Wu, Y. Cai, H. Liu, X. Jing, T. Yang, D. Chen, X. Bai, M. Zhou, L. Li, Rationally design of 2D branched Ni(OH)2/MnO2 hybrid hierarchical architecture on Ni foam for high performance supercapacitors. Electrochim. Acta 307, 310–317 (2019). https://doi.org/10.1016/j.electacta.2019.03.229

    Article  CAS  Google Scholar 

  10. Q. Jiang, N. Kurra, M. Alhabeb, Y. Gogotsi, H.N. Alshareef, All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv. Eng. Mater. 8, 1703043 (2018). https://doi.org/10.1002/aenm.201703043

    Article  CAS  Google Scholar 

  11. Y. Li, Z. Xu, D. Wang, J. Zhao, H. Zhang, Snowflake-like core-shell α-MnO2@δ-MnO2 for high performance asymmetric supercapacitor. Electrochim. Acta 251, 344–354 (2017). https://doi.org/10.1016/j.electacta.2017.08.146

    Article  CAS  Google Scholar 

  12. Y. Wang, X. Zhang, X. Li, X. Li, Y. Zhao, H. Wei, Y. Liu, P. Jiang, M. Liang, Highly dispersed ultrasmall Ni(OH)2 aggregated particles on a conductive support as a supercapacitor electrode with superior performance. J. Colloid Interface Sci. 490, 252–258 (2017). https://doi.org/10.1016/j.jcis.2016.11.072

    Article  CAS  Google Scholar 

  13. Q. Ma, W. Hu, D. Peng, R. Shen, X. Xia, H. Chen, Y. Chen, H. Liu, Freestanding core-shell Ni(OH)2@ MnO2 structure with enhanced energy density and cyclic performance for asymmetric supercapacitors. J. Alloys Compd. 803, 866–874 (2019). https://doi.org/10.1016/j.jallcom.2019.06.368

    Article  CAS  Google Scholar 

  14. X. Bai, X. Tong, Y. Gao, W. Zhu, C. Fu, J. Ma, T. Tan, C. Wang, Y. Luo, H. Sun, Hierarchical multidimensional MnO2 via hydrothermal synthesis for high performance supercapacitors. Electrochim. Acta 281, 525–533 (2018). https://doi.org/10.1016/j.electacta.2018.06.003

    Article  CAS  Google Scholar 

  15. A.R. Selvaraj, R. Rajendiran, D. Chinnadurai, G. Rajendra-Kumar, H.-J. Kim, K. Senthil, K. Prabakar, Stabilization of cryptomelane α-MnO2 nanowires tunnels widths for enhanced electrochemical energy storage. Electrochim. Acta 283, 1679–1688 (2018). https://doi.org/10.1016/j.electacta.2018.07.095

    Article  CAS  Google Scholar 

  16. O. Sadak, W. Wang, J. Guan, A.K. Sundramoorthy, S. Gunasekaran, MnO2 nanoflowers deposited on graphene paper as electrode materials for supercapacitors. ACS Appl. Nano Mater. 2(7), 4386–4394 (2019). https://doi.org/10.1021/acsanm.9b00797

    Article  CAS  Google Scholar 

  17. H. Shen, Y. Zhang, X. Song, Y. Liu, H. Wang, H. Duan, X. Kong, Facile hydrothermal synthesis of actiniaria-shaped α-MnO2/activated carbon and its electrochemical performances of supercapacitor. J. Alloys Compd. 770, 926–933 (2019). https://doi.org/10.1016/j.jallcom.2018.08.228

    Article  CAS  Google Scholar 

  18. J. Nan, Y. Shi, Z. Xiang, S. Wang, B. Zhang, Ultrathin NiCo2O4 nanosheets assembled on biomass-derived carbon microsheets with polydopamine for high-performance hybrid supercapacitors. Electrochim. Acta 301, 107–116 (2019). https://doi.org/10.1016/j.electacta.2019.01.167

    Article  CAS  Google Scholar 

  19. A. Singh, S.K. Ojha, A.K. Ojha, Facile synthesis of porous nanostructures of NiCo2O4 grown on rGO sheet for high performance supercapacitors. Synth. Met. 259, 116215 (2020). https://doi.org/10.1016/j.synthmet.2019.116215

    Article  CAS  Google Scholar 

  20. X. Han, X. Gui, T.F. Yi, Y. Li, C. Yue, Recent progress of NiCo2O4-based anodes for high- performance lithium-ion batteries. Curr. Opin. Solid State Mater. Sci. 22, 109–126 (2018). https://doi.org/10.1016/j.cossms.2018.05.005

    Article  CAS  Google Scholar 

  21. M. Ye, L. Ma, M. Gan, Y. Zhou, X. Li, F. Cao, F. Yan, Y. Zhai, One-step integration of the C/NiCo2O4 mesoporous nanoneedle arrays on Ni foam for high-performance hybrid supercapacitors. Appl. Surf. Sci. 456, 390–397 (2018). https://doi.org/10.1016/j.apsusc.2018.06.101

    Article  CAS  Google Scholar 

  22. N. Zhang, Y.H. Ding, J.Y. Zhang, B. Fu, X. Zhang, X. Zheng, Y. Fang, Construction of MnO2 nanowires@Ni1-xCoxOy nanoflake core-shell heterostructure for high performance supercapacitor. J. Alloys Compd. 694, 1302–1308 (2017). https://doi.org/10.1016/j.jallcom.2016.10.072

    Article  CAS  Google Scholar 

  23. E. Umeshbabu, G. Rajeshkhanna, P. Justin, G.R. Rao, NiCo2O4/rGO hybrid nanostructures for efficient electrocatalytic oxygen evolution. J. Solid State Electron. Chem. 20, 2725–2736 (2016). https://doi.org/10.1007/s10008-016-3278-4

    Article  CAS  Google Scholar 

  24. E. Umeshbabu, G. Rajeshkhanna, P. Justin, G.R. Rao, Magnetic, optical and electrocatalytic properties of urchin and sheaf-like NiCo2O4 nanostructures. Mater. Chem. Phys. 165, 235–244 (2015). https://doi.org/10.1016/j.matchemphys.2015.09.023

    Article  CAS  Google Scholar 

  25. W. Qiu, H. Xiao, M. Yu, Y. Li, X. Lu, Surface modulation of NiCo2O4 nanowire arrays with significantly enhanced reactivity for ultrahigh-energy supercapacitors. Chem. Eng. J. 352, 996–1003 (2018). https://doi.org/10.1016/j.cej.2018.04.118

    Article  CAS  Google Scholar 

  26. L. Sha, K. Ye, G. Wang, J. Shao, K. Zhu, K. Cheng, J. Yan, G. Wang, D. Cao, Hierarchical NiCo2O4 nanowire array supported on Ni foam for efficient urea electrooxidation in alkaline medium. J. Power Sources 412, 265–271 (2019). https://doi.org/10.1016/j.jpowsour.2018.11.059

    Article  CAS  Google Scholar 

  27. N. Wang, B. Sun, P. Zhao, M. Yao, W. Hu, S. Komarneni, Electrodeposition preparation of NiCo2O4 mesoporous film on ultrafine nickel wire for flexible asymmetric supercapacitors. Chem. Eng. J. 345, 31–38 (2018). https://doi.org/10.1016/j.cej.2018.03.147

    Article  CAS  Google Scholar 

  28. J. Luo, J. Wang, S. Liu, W. Wu, T. Jia, Z. Yang, S. Mu, Y. Huang, Graphene quantum dots encapsulated tremella-like NiCo2O4 for advanced asymmetric supercapacitors. Carbon 146, 1–8 (2019). https://doi.org/10.1016/j.carbon.2019.01.078

    Article  CAS  Google Scholar 

  29. W. Guo, Y. Wu, Y. Tian, X. Lian, J. Li, S. Wang, Hydrothermal synthesis of NiCo2O4/CoMoO4 nanocomposite as a high-performance electrode material for hybrid supercapacitors. ChemElectroChem 6, 4645–4652 (2019). https://doi.org/10.1002/celc.201901250

    Article  CAS  Google Scholar 

  30. Y. Zhou, L. Ma, M. Gan, M. Ye, X. Li, Y. Zhai, F. Yan, F. Cao, Monodisperse MnO2@NiCo2O4 core/shell nanospheres with highly opened structures as electrode materials for good-performance supercapacitors. Appl. Surf. Sci. 444, 1–9 (2018). https://doi.org/10.1016/j.apsusc.2018.03.049

    Article  CAS  Google Scholar 

  31. Y. Liu, J. Xu, H. Li, S. Cai, H. Hu, C. Fang, L. Shi, D. Zhang, Rational design and in situ fabrication of MnO2@NiCo2O4 nanowire arrays on Ni foam as high-performance monolith de-NOx catalysts. J. Mater. Chem. A 3, 11543–11553 (2015). https://doi.org/10.1039/C5TA01212K

    Article  CAS  Google Scholar 

  32. X. Wu, L. Meng, Q. Wang, W. Zhang, Y. Wang, High flexibility and large energy density asymmetric fibered-supercapacitor based on unique NiCo2O4@MnO2 core-shell nanobrush arrays electrode. Electrochim. Acta 295, 532–539 (2019). https://doi.org/10.1016/j.electacta.2018.10.196

    Article  CAS  Google Scholar 

  33. Z. Ma, G. Shao, Y. Fan, M. Feng, D. Shen, H. Wang, Fabrication of high-performance all-solid-stateasymmetric supercapacitors based on stable α-MnO2@NiCo2O4 core-shell heterostructure and 3D-nanocage N-doped porous carbon. ACS Sustain. Chem. Eng. 5, 4856–4868 (2017). https://doi.org/10.1021/acssuschemeng.7b00279

    Article  CAS  Google Scholar 

  34. P. Nayak, M. Sahoo, S.K. Nayak, Urchin-like NiCo2O4 microsphere by hydrothermal route: Structural, electrochemical, optical and magnetic properties. Ceram. Int. 46, 3818–3826 (2020). https://doi.org/10.1016/j.ceramint.2019.10.105

    Article  CAS  Google Scholar 

  35. Y. Qu, X. Tong, C. Yan, Y. Li, Z. Wang, S. Xu, D. Xiong, L. Wang, P. Chu, Hierarchical binder-free MnO2/TiO2 composite nanostructure on flexible seed graphite felt for high-performance supercapacitors. Vacuum 181, 109648 (2020). https://doi.org/10.1016/j.vacuum.2020.109648

    Article  CAS  Google Scholar 

  36. Y.K. Hsu, Y.C. Chen, Y.G. Lin, L.C. Chen, K.H. Chen, Reversible phase transformation of MnO2 nanosheets in an electrochemical capacitor investigated by in situ Raman spectroscopy. Chem. Commun. 47, 1252–1254 (2011). https://doi.org/10.1039/C0CC03902K

    Article  CAS  Google Scholar 

  37. L. Bao, J. Zang, X. Li, Flexible Zn2SnO4/MnO2 core/shell nanocable-carbon microfiber hybrid composites for high-performance supercapacitor electrodes. Nano Lett. 11, 1215–1220 (2011). https://doi.org/10.1021/nl104205s

    Article  CAS  Google Scholar 

  38. J. Liu, J. Jiang, M. Bosman, H.J. Fan, Three-dimensional tubular arrays of MnO2-NiO nanoflakes with high areal pseudocapacitance. J. Mater. Chem. 22, 2419–2426 (2012). https://doi.org/10.1039/C1JM14804D

    Article  CAS  Google Scholar 

  39. T. Zhou, X. Liu, R. Zhang, Y. Wang, T. Zhang, NiO/NiCo2O4 truncated nanocages with PdO catalyst functionalization as sensing layers for acetone detection. ACS Appl. Mater. Interfaces 10, 37242–37250 (2018). https://doi.org/10.1021/acsami.8b12981

    Article  CAS  Google Scholar 

  40. L. Shen, Q. Che, H. Li, X. Zhang, Mesoporous NiCo2O4 nanowire arrays grown on carbon textilesas binder-free flexible electrodes for energy storage. Adv. Funct. Mater. 24, 2630–2637 (2014). https://doi.org/10.1002/adfm.201303138

    Article  CAS  Google Scholar 

  41. K. Wang, Y. Huang, M. Wang, M. Yu, Y. Zhu, J. Wu, PVD amorphous carbon coated 3D NiCo2O4 on carbon cloth as flexible electrode for both sodium and lithium storage. Carbon 125, 375–383 (2017). https://doi.org/10.1016/j.carbon.2017.09.080

    Article  CAS  Google Scholar 

  42. Y. Zhu, Y. Huang, M. Wang, K. Wang, M. Yu, X. Chen, Z. Zhang, Novel carbon coated core-shell heterostructure NiCo2O4@NiO grown on carbon cloth as flexible lithium-ion battery anodes. Ceram. Int. 44, 21690–21698 (2018). https://doi.org/10.1016/j.ceramint.2018.08.257

    Article  CAS  Google Scholar 

  43. Z. Zhao, T. Shen, Z. Liu, Q. Zhong, Y. Qin, Facile fabrication of binder-free reduced graphene oxide/MnO2/Ni foam hybrid electrode for high-performance supercapacitors. J. Alloys Compd. 812, 152124 (2022). https://doi.org/10.1016/j.jallcom.2019.152124

    Article  CAS  Google Scholar 

  44. C. Guo, J. Li, Y. Chu, H. Zhang, L. Hou, Y. Wei, J. Liu, S. Xiong, Unusual formation of NiCo2O4@MnO2/nickel foam/MnO2 sandwich as advanced electrodes for hybrid supercapacitors. Dalton Trans. 48, 7403–7412 (2019). https://doi.org/10.1039/C9DT00696F

    Article  CAS  Google Scholar 

  45. J.N. Zhang, P. Liu, C. Jin, L.-N. Jin, S.-W. Bian, Q. Zhu, B. Wang, Flexible three-dimensional carboncloth/carbon fibers/NiCo2O4 composite electrode materials for high-performance all-solid-stateelectrochemical capacitors. Electrochim. Acta 256, 90–99 (2017). https://doi.org/10.1016/j.electacta.2017.10.005

    Article  CAS  Google Scholar 

  46. Y.H. Ding, N. Zhang, J.Y. Zhang, X. Wang, J. Jin, X. Zheng, Y. Fang, The additive-free electrode based on the layered MnO2 nanoflowers/reduced, graphene oxide film for high performance supercapacitor. Ceram. Int. 43, 5374–5381 (2017). https://doi.org/10.1016/j.ceramint.2016.10.032

    Article  CAS  Google Scholar 

  47. K. Xu, W. Li, Q. Liu, B. Li, X. Liu, L. An, Z. Chen, R. Zou, J. Hu, Hierarchical mesoporous NiCo2O4@MnO2 core–shell nanowire arrays on nickel foam for aqueous asymmetric supercapacitors. J. Mater. Chem. A 2(13), 4795–4802 (2014). https://doi.org/10.1039/C3TA14647B

    Article  CAS  Google Scholar 

  48. L. Huang, D. Chen, Y. Ding, S. Feng, Z.L. Wang, M. Liu, Nickel-cobalt hydroxide nanosheets coatedon NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 13, 3135–3139 (2013). https://doi.org/10.1021/nl401086t

    Article  CAS  Google Scholar 

  49. J. Ao, R. Miao, J. Li, Flexible solid-state supercapacitor based on reduced graphene oxide-enhanced electrode materials. J. Alloys Compd. 802, 355–363 (2019). https://doi.org/10.1016/j.jallcom.2019.06.203

    Article  CAS  Google Scholar 

  50. H. Wang, Q. Fu, C.X. Pan, Green mass synthesis of graphene oxide and its MnO2 composite for high performance supercapacitor. Electrochim. Acta 312, 11–21 (2019). https://doi.org/10.1016/j.electacta.2019.04.178

    Article  CAS  Google Scholar 

  51. H.-W. Wang, Z.-A. Hu, Y.-Q. Chang, Y.-L. Chen, Z.-Q. Lei, Z.-Y. Zhang, Y.-T. Yang, Facile solvothermal synthesis of a graphene nanosheet-bismuth oxide composite and its electrochemical characteristics. Electrochim. Acta 55, 8974–8980 (2010). https://doi.org/10.1016/j.electacta.2010.08.048

    Article  CAS  Google Scholar 

  52. M. Huang, X. Zhao, F. Li, W. Li, B. Zhang, Y. Zhang, Synthesis of Co3O4/SnO2@MnO2 core-shell nanostructures for high-performance supercapacitors. J. Mater. Chem. A 3, 12852–12857 (2015). https://doi.org/10.1039/C5TA02144H

    Article  CAS  Google Scholar 

  53. L. Xuan, L. Chen, Q. Yang, W. Chen, X. Hou, Y. Jiang, Q. Zhang, Y. Yuan, Engineering 2D multi-layer graphene-like Co3O4 thin sheets with vertically aligned nanosheets as basic building units foradvanced pseudocapacitor materials. J. Mater. Chem. A 3, 17525–17533 (2015). https://doi.org/10.1039/C5TA05305F

    Article  CAS  Google Scholar 

  54. T. Pu, J. Li, Y. Jiang, B. Huang, W. Wang, C. Zhao, L. Xie, L. Chen, Size and crystallinity control of two-dimensional porous cobalt oxalate thin sheets: tuning surface structure with enhanced performance for aqueous asymmetric supercapacitors. Dalton Trans. 47, 9241–9249 (2018). https://doi.org/10.1039/C8DT01920G

    Article  CAS  Google Scholar 

  55. G. Cheng, T. Kou, J. Zhang, C. Si, H. Gao, Z. Zhang, O22-/O- functionalized oxygen-deficient Co3O4 nanorods as high performance supercapacitor electrodes and electrocatalysts towards water splitting. Nano Energy 38, 155–166 (2017). https://doi.org/10.1016/j.nanoen.2017.05.043

    Article  CAS  Google Scholar 

  56. W. Yan, J. Bi, W. Wang, Z. Xing, R. Liu, X. Hao, X. Gao, M. Leng, Hierarchical MnO2@ NiCo2O4@ Ti3SiC2/carbon cloth core-shell structure with superior electrochemical performance for all solid-state supercapacitors. Ceram. Int. 47, 292–300 (2021). https://doi.org/10.1016/j.ceramint.2020.08.133

    Article  CAS  Google Scholar 

  57. S. Wen, Y. Liu, H. Bai, R. Shao, W. Xu, W. Shi, Full synergistic effect of hydrothermal NiCo2O4 nanosheets/CuCo2O4 nanocones supported on Ni foam for high-performance asymmetric supercapacitors. J. Solid State Chem. 262, 327–334 (2018). https://doi.org/10.1016/j.jssc.2018.03.023

    Article  CAS  Google Scholar 

  58. T. Liu, Y. Li, G. Quan, P. Dai, X. Yu, M. Wu, Z. Sun, G. Li, Magnetic-field-assisted preparation of one-dimensional (1-D) wire-like NiO/Co3O4 composite for improved specific capacitance and cycleability. Mater. Lett. 139, 208–211 (2015). https://doi.org/10.1016/j.matlet.2014.10.090

    Article  CAS  Google Scholar 

  59. L. Su, Y. Wang, Y. Sha, M. Hao, Ternary active site Co3O4/NiO/MnO2 electrode with enhanced capacitive performances. J. Alloys Compd. 656, 585–589 (2016). https://doi.org/10.1016/j.jallcom.2015.10.006

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (grant number 21707093, 51472162, 51672177) and the Foundation of Science and Technology Commission of Shanghai Municipality (grant number 18090503600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongzheng Fang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOC 166 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Xu, C., Wang, H. et al. Assembly of the hierarchical MnO2@NiCo2O4 core–shell nanoflower for supercapacitor electrodes. J Mater Sci: Mater Electron 32, 1787–1799 (2021). https://doi.org/10.1007/s10854-020-04947-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04947-7

Navigation