Skip to main content
Log in

Study of the semiconducting properties of Cu2ZnSnS4 thin films grown by ultrasonic spray pyrolysis of water-dissolved precursors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cu2ZnSnS4 (CZTS) thin films were deposited on glass-slide substrates by ultrasonic spray pyrolysis at the substrate temperatures in the 330–420 °C range, using water–ethanol solutions containing CuCl2–H2O, ZnCl2, SnCl2, and (NH2)2CS (thiourea). After being deposited, CZTS films were annealed under vacuum and then characterized in regarding their structural and optical properties. The X-ray diffraction and Raman spectroscopy studies indicated that CZTS thin films with kesterite as predominant phase could be obtained. The X-ray diffraction patterns of all deposited samples displayed diffraction peaks corresponding to the planes (112), (220), and (312) of kesterite CZTS and diffraction peaks belonging to phases other than CZTS were apparently undetectable for the X-ray technique. Furthermore, their Raman spectra were featured for a widely structured Raman band in the 200–400 cm−1 wavenumber area. After being deconvoluted, Raman peaks belonging only to kesterite CZTS were revealed. However, a further analysis of the UV–Vis absorbance spectra indicated all our films strongly absorbs in this spectral region. In the low photon energy region (< 1.5 eV), Tauc plots revealed electron transitions with characteristic energy values in the 1.15–1.34 eV range, which could be attributed at the presence of tetragonal Cu2SnS3 and point defects (VS and VZn) into CZTS. All prepared CZTS films display the p-type conductivity as verified by Hall measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

taken from b

Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Jiang, X. Yan, Cu2ZnSnS4 Thin Films Solar Cell: Present Status and Future Prospects, Solar Cells-Research and Application Perspectives/InTech. 2013.

  2. A. Nagoya, R. Asahi, R. Wahl, G. Kresse, Phys. Rev. B 81, 113202 (2010)

    Article  CAS  Google Scholar 

  3. K. Yu, E.A. Carter, Chem. Mater. 27(8), 2920–2927 (2015)

    Article  CAS  Google Scholar 

  4. J. Just, C.M. Sutter-Fella, D.L. Tzenkirchen-Hecht, R. Frahm, S. Schorr, T. Unold, Phys. Chem. Chem. Phys. 18, 15988–15994 (2016)

    Article  CAS  Google Scholar 

  5. M. Patel, I. Mukhopadhyay, A. Ray, J. Phys. D 45(44), 445103 (2012)

    Article  CAS  Google Scholar 

  6. M. Kumar, A. Dubey, N. Adhikari, S. Venkatesan, Q. Qiao, Energy Environ. Sci. 8, 3134–3159 (2015)

    Article  CAS  Google Scholar 

  7. I.D. Olekseyuk, I.V. Dudchak, L.V. Piskach, J. Alloy Compd. 368, 35–143 (2004)

    Article  CAS  Google Scholar 

  8. K. Muska, M. Kauk, M. Altosaar, M. Pilvet, M. Grossberg, O. Volobujeva, Energy Procedia. 10, 203–207 (2011)

    Article  CAS  Google Scholar 

  9. V.R. Reddy, M.R. Pallavolu, P.R. Guddeti, S. Gedi, K.K. Reddy, B. Pejjai, W.K. Kim, T.R. Kotte, C. Park, J. Ind. Eng. Chem. 76, 39–74 (2019)

    Article  CAS  Google Scholar 

  10. O. Vigil-Galán, M. Espíndola-Rodríguez, Maykel Courel, X. Fontané, D. Sylla, V. Izquierdo-Roca, A. Fairbrother, E. Saucedo, A. Pérez-Rodríguez, Sol. Energy Mater. Sol. Cells 117, 246–250 (2013)

  11. A. Giaccherini, G. Montegrossi, F. Di Benedetto, Minerals 6, 79 (2016)

    Article  CAS  Google Scholar 

  12. P.A. Fernandes, P.M.P. Salomé, A.F. da Cunha, J. Phys. D 43, 215403–215414 (2010)

    Article  CAS  Google Scholar 

  13. K.G. Deepa, T.H. Sajeesh, N. Jampana, J. Electron. Mater. 47(1), 530–535 (2018)

    Article  CAS  Google Scholar 

  14. M.Y. Yec, C. Lee, D.S. Wuu, J. Sol-Gel Sci. Technol. 52, 65–68 (2009)

    Article  CAS  Google Scholar 

  15. M.M. Kawi, Appl. Mech. Mater. 343, 85–89 (2013)

    Article  CAS  Google Scholar 

  16. A. Weber, H. Krauth, Thin Solid Films 517, 2524–2526 (2009)

    Article  CAS  Google Scholar 

  17. W. Daranfed, M.S. Aida, N. Attaf, J. Bougdira, H. Rinnert, J. Alloy Compd. 542, 22–27 (2012)

    Article  CAS  Google Scholar 

  18. P.A. Fernandes, P.M.P. Salomé, Thin Solid Films 517, 2519–2523 (2009)

    Article  CAS  Google Scholar 

  19. J.H. Bang, Y.T. Didenko, R.J. Helmich, K.S. Suslick, Mater. Matters 7(2), 15–20 (2012)

    CAS  Google Scholar 

  20. D. Perednis, L.J. Gauckler, J. Electroceram. 14, 103–111 (2005)

    Article  CAS  Google Scholar 

  21. M. Espindola-Rodriguez, M. Placidi, O. Vigil Galan, V. Izquierdo Roca, Z. Fontane, A. Fairbrother, D. Sylla, E. Saucedo and A. Perez-Rodriguez, Thin Solid Films, 535, 67–72 (2013)

  22. P.S. Patil, Mater. Chem. Phys. 59, 185–198 (1999)

    Article  CAS  Google Scholar 

  23. O. Vigil-Galan, M. Courel, M. Espindola-Rodriguez, V. Izquierdo-Roca, E. Saucedo, A. Fairbrother, J. Renew. Sustain. Energy 5, 053137 (2013)

    Article  CAS  Google Scholar 

  24. A.D. Collord, H. Xin, H.W. Hillhouse, IEEE J. Photovolt. 5(1), 288–298 (2015)

    Article  Google Scholar 

  25. G. Larramona et al., J. Phys. Chem. Lett. 5(21), 3763–3767 (2014)

    Article  CAS  Google Scholar 

  26. T.H. Nguyen, W. Septina, S. Fujikawa, F. Jiang, T. Harada, S. Ikeda, RSC Adv. 5(95), 77565–77571 (2015)

    Article  CAS  Google Scholar 

  27. S. Cisse, M. Covei, J.J. Domingo, A. Duta, Am. J. Mater. Synth. Process. 4(1), 1–8 (2019)

    Google Scholar 

  28. M. Courel, E. Valencia-Resendiz, J.A. Andrade-Arvizu, E. Saucedo, O. Vigil-Galán, Sol. Energy Mater. Sol. Cells 159, 151–158 (2017)

    Article  CAS  Google Scholar 

  29. M. Courel, O. Vigil-Galan, D. Jimenez-Olarte, M. Espındola-Rodrıguez, E. Saucedo, J. Appl. Phys. 116, 134503 (2014)

    Article  CAS  Google Scholar 

  30. F. Flores-Gracia, A. Luna-Flores, J. Martinez-Juarez, J.A. Luna-Lopez, Rev. Mexicana Fısica 61, 123–126 (2015)

    Google Scholar 

  31. K. Alnama, B. Abdallah, S. Kanaan, Compos. Interfaces 24(5), 499–513 (2017)

    Article  CAS  Google Scholar 

  32. Y.E. Firat, H. Yildirim, K. Erturk, A. Peksoz, Hindawi Publishing Corporation Scanning 2017, 1–8 (2017)

  33. I.E. Espinoza, Y.M. Kuwabara, M.O. López, 2017 14th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), (2017)

  34. U. Holzwarth, N. Gibson, Nat. Nanotechnol. 6, 534 (2011)

    Article  CAS  Google Scholar 

  35. T.P. Mernagh, A.G. Trudu, Chem. Geol. 103, 113–127 (1993)

    Article  CAS  Google Scholar 

  36. P. Kumar, R. Nagarajan, Inorg. Chem. 50, 9204–9206 (2011)

    Article  CAS  Google Scholar 

  37. J. Serrano, A. Cantero, M. Cardona, N. Garro, R. Lauck, R.E. Tallman, T.M. Ritter, B.A. Weinstein, Phys. Rev. B 69, 014301 (2004)

    Article  CAS  Google Scholar 

  38. J. Li, Y.C. Zhang, M. Zhang, Optoelectron. Mater. 663–665, 04–107 (2011)

    Google Scholar 

  39. I.E. Espinoza, Y.M. Kuwabara, M.O. López, J.O.E. Espinoza, 2018 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), (2018)

  40. Y.-X. Guo, W.-J. Cheng, J.-C. Jiang, J.-H. Chu, J. Mater. Sci.: Mater. Electron. 27, 4636–4646 (2016)

    CAS  Google Scholar 

  41. N.A. Bakr, S.A. Salman, S.A. Hameed, Int. J. Appl. Eng. Res. ISSN 0973-4562, 13(6), 3379–3388 (2018)

  42. X. Zhang, E. Fu, Y. Wang, C. Zhang, Nanomaterials 9, 336 (2019)

    Article  CAS  Google Scholar 

  43. S.K. Swami, A. Kumar, V. Dutta, Energy Procedia 33, 198–202 (2013)

    Article  CAS  Google Scholar 

  44. M. Dimitrievska, F. Boero, A.P. Litvinchuk, S. Delsante, G. Borzone, A. Perez-Rodriguez, V. Izquierdo-Roca, Inorg. Chem. 56, 3467–3474 (2017)

    Article  CAS  Google Scholar 

  45. M. Dimitrievska, A. Fairbrother, X. Fontane, T. Jawhari, V. Izquierdo-Roca, E. Saucedo, A. Perez-Rodrıguez, Appl. Phys Lett. 104, 021901 (2014)

    Article  CAS  Google Scholar 

  46. A. Sharmin, M.S. Bashar, M. Sultana, S.M. Mostafa Al Mamun, AIP Adv. 10, 015230 (2020)

    Article  CAS  Google Scholar 

  47. Y. Wang, H. Gong, J. Electrochem. Soc. 158, H800–H803 (2011)

    Article  CAS  Google Scholar 

  48. D. Dumcenco, Opt. Mater. 35, 419–425 (2013)

    Article  CAS  Google Scholar 

  49. B. Patro, S. Vijaylakshmi, AIP Conf. Proc. 1731, 140055 (2016)

    Article  Google Scholar 

  50. G. Rajesh, N. Muthukumarasamy, E.P. Subramaniam, S. Agilan, D. Velauthapillai, J. Sol-Gel Sci. Technol. 66, 288–292 (2013)

    Article  CAS  Google Scholar 

  51. M. Guc, S. Levcenko et al., Sci. Rep. 6, 19414 (2016)

    Article  CAS  Google Scholar 

  52. X. Fontané, L. Calvo, V. Izquierdo, E. Saucedo, A. Pérez, J.R. Morante, D.M. Berg, P.J. Dale, S. Siebentritt, Appl. Phys. Lett. 98, 181905 (2011)

    Article  CAS  Google Scholar 

  53. H. Yoo, J. Kim, Thin Solid Films 518, 6567 (2010)

    Article  CAS  Google Scholar 

  54. K. Wang, B. Shin, K.B. Reuter, T. Todorov, D.B. Mitzi, Appl. Phys. Lett. 98, 051912 (2011)

    Article  CAS  Google Scholar 

  55. I.S. Babichuk, V.O. Yukhymchuk, M.O. Semenenko, N.I. Klyui, R. Caballero, O.M. Hreshchuk, I.S. Lemishko I.V. Babichuk, V.O. Ganus, M. Leon, Semicond. Phys. Quant. Electron. Optoelectron. 17, 284–290 (2014)

  56. B.K. Rajwar, S.K. Sharma, Phisica B 537, 111–115 (2018)

    Article  CAS  Google Scholar 

  57. J. Sun, Y. Hu, K. Liao, C. Tang, Y. Lang, J. Xu, L. Zhao, W. Zhou, Q. Wang, K. He, Ceram. Int. 43, 8103–8108 (2017)

    Article  CAS  Google Scholar 

  58. M. Xie, D. Zhuang, M. Zhao, Z. Zhuang, L. Ouyang, X. Li, J. Song, Int. J. Photoenergy 2013, 9 (2013)

    Google Scholar 

  59. P.A. Fernandes, P.M.P. Salomé, A.F. da Cunha, J. Alloy Compd. 509, 7600–7606 (2011)

    Article  CAS  Google Scholar 

  60. N.A. Bakr, S.A. Salman, S.A. Hameed, Int. J. Appl. Eng. Res. 13(6), 3379–3388 (2018)

    Google Scholar 

  61. M.Z. Ansari, M. Faraz, S. Munjal, V. Kumar, N. Khare, Adv. Powder Technol. 28, 2402–2409 (2017)

    Article  CAS  Google Scholar 

  62. J. Wang, P. Zhang, X. Song, L. Gao, R. Soc. Chem. 5, 1220–1226 (2015)

    CAS  Google Scholar 

  63. B. Long, S. Cheng, Q. Zheng, J. Yu, H. Jia, Mater. Res. Bull. 73, 140–144 (2016)

    Article  CAS  Google Scholar 

  64. R. Chen, J. Fan, H. Li, C. Liu, Y. Mai, R Soc. Open Sci. 5(1), 171163 (2018)

    Article  CAS  Google Scholar 

  65. M. Dimitrievska, A. Fairbrother, X. Fontané, T. Jawhari, V. Izquierdo-Roca, E. Saucedo, A. Perez-Rodrıguez, Appl. Phys. Lett. 104, 021901 (2014)

    Article  CAS  Google Scholar 

  66. H. Katagiri, K. Jimbo, W.S. Maw, K. Oishi, M. Yamazaki, H. Araki, A. Takeuchi, Thin Solid Films 517, 2455–2460 (2009)

    Article  CAS  Google Scholar 

  67. N. Ghobadi, Int. Nano Lett. 3, 2 (2013)

    Article  CAS  Google Scholar 

  68. M. Ben Rabeh, R. Touatti, M. Kanzari, IJEPR 2, 71–76 (2013)

    Google Scholar 

  69. I.V. Bodnar, E.V. Telesh, G. Gurieva, S. Schorr, J. Electron. Mater. 44(10), 3283–3287 (2015)

    Article  CAS  Google Scholar 

  70. S. Rahaman, M.A. Sunil, M.K. Singha, K. Ghosh, Mater. Res. Express 6, 106417 (2019)

    Article  CAS  Google Scholar 

  71. P.A. Fernandes, P.M.P. Salomé, A.F. da Cunha, J. Phys. D 43, 215403 (2010)

    Article  CAS  Google Scholar 

  72. S. Chen, J.H. Yang, X.G. Gong, A. Walsh, S.H. Wei, Phys. Rev. 81, 245204 (2010)

    Article  CAS  Google Scholar 

  73. P. Prabeesh, P. Saritha, I. PackiaSelvam, S.N. Potty, Adv. Mater. Proc. 2(1), 46–50 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to M. Sc. Adolfo Tavira for XRD measurements and Álvaro Guzmán Campuzano for his technical assistance in the material synthesis, Manuel Aguilar (UNAM) for AFM measurements, Miguel Galvan for Hall effect measurements, and Miguel Luna for profilometry measurements. Ignacio Estevez acknowledges to CONACYT by the provided scholarship for studying at CINVESTAV-IPN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Estevez Espinoza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espinoza, I.E., Kuwabara, Y.M., Ortega López, M. et al. Study of the semiconducting properties of Cu2ZnSnS4 thin films grown by ultrasonic spray pyrolysis of water-dissolved precursors. J Mater Sci: Mater Electron 32, 47–58 (2021). https://doi.org/10.1007/s10854-020-04622-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04622-x

Navigation