Skip to main content
Log in

Effect of thiourea concentration on the growth and properties of Cu\(_{3}\)SnS\(_{4}\) thin films prepared by spray pyrolysis

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

\(\hbox {Cu}_{3}\hbox {SnS}_{4}\) thin films were deposited onto soda-lime glass substrates held at \(360\,^{\circ }\)C using spray pyrolysis technique. The influence of thiourea concentration on the growth and properties of these films is studied by varying the thiourea concentration (0.04–0.09 M) and keeping cupric chloride (0.015 M) and stannic chloride (0.005 M) concentrations as constant in solution. These films were analyzed by studying their elemental composition, structural, microstructural, optical and electrical properties using appropriate characterization techniques. X-ray diffraction and Raman spectroscopy analyses revealed that the films deposited from solutions with 0.04 and 0.05 M thiourea concentrations contain CuS and \(\hbox {Cu}_{2}\hbox {SnS}_{3}\) (CTS) phases, respectively. Nanocrystalline \(\hbox {Cu}_{3}\hbox {SnS}_{4}\) films with cubic structure could be obtained by increasing the thiourea concentration from 0.07 to 0.09 M in the starting solution. The lattice parameter and crystallite size of these films are found to be 0.540 and 6 nm, respectively. The direct optical band gap of these films is found to decrease from 1.75 to 1.70 eV with increasing the thiourea concentration from 0.07 to 0.09 M in the solution. The room temperature electrical resistivity of these films is found to lie in the range \(1.9\times 10^{-3}\)\(0.9\times 10^{-3}\Omega\) cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T.M. Friedlmeier, M. Powalla, Phys. Status Solidi (RRL) 9999, 28 (2014)

    Google Scholar 

  2. B. Shin, O. Gunawan, Y. Zhu, N.A. Bojarczuk, S.Jay Chey, S. Guha, Prog. Photovolt. Res. Appl. 21(1–3), 72 (2013)

    Article  Google Scholar 

  3. L.K. Samanta, D.K. Ghosh, G.C. Bhar, Phys. Status Solidi A 93(1), K51 (1986)

    Article  Google Scholar 

  4. T.A. Kuku, O.A. Fakolujo, Sol. Energy Mater. 16(1–3), 199 (1987)

    Article  Google Scholar 

  5. Y. Xiong, Y. Xie, G. Du, H. Su, J. Inorg. Chem. 41(11), 2953 (2002)

    Article  Google Scholar 

  6. D. Avellaneda, M.T.S. Nair, P.K. Nair, J. Electrochem. Soc. 157, D346 (2010)

    Article  Google Scholar 

  7. M. Bouaziz, J. Ouerfelli, M. Amlouk, S. Belgacem, Phys. Status Solidi A 204(10), 3354 (2007)

    Article  Google Scholar 

  8. M. Bouaziz, K. Boubaker, M. Amlouk, S. Belgacem, J. Phase Equilibria Diffus. 31(6), 498 (2010)

    Article  Google Scholar 

  9. P.A. Fernandes, P.M.P. Salomé, A.F. da Cunha, J. Phys. D Appl. Phys. 43, 215403 (2010)

    Article  Google Scholar 

  10. P.A. Fernandes, P.M.P. Salomé, A.F. da Cunha, Phys. Status Solidi (c) 7(3–4), 901 (2010)

    Google Scholar 

  11. Z. Su, K. Sun, Z. Han, F. Liu, Y. Lai, J. Li, Y. Liu, J. Mater. Chem. 22(32), 16346 (2012)

    Article  Google Scholar 

  12. H. Guan, H. Shen, C. Gao, X. He, J. Mater. Sci. Mater. Electron. 24(5), 1490 (2013)

    Article  Google Scholar 

  13. U. Chalapathi, Y.B. Kishore Kumar, S. Uthanna, V. Sundara Raja, Thin Solid Films 556, 61 (2014)

    Article  Google Scholar 

  14. R. Chamberlin, J. Skarman, J. Electrochem. Soc. 113(1), 86 (1966)

    Article  Google Scholar 

  15. F. Di Benedetto, D. Borrini, A. Caneschi, G. Fornaciai, M. Innocenti, A. Lavacchi, C. Massa, G. Montegrossi, W. Oberhauser, L.A. Pardi, M. Romanelli, Phys. Chem. Miner. 38(6), 483 (2011)

    Article  Google Scholar 

  16. B.D. Cullity, Elements of X-ray Diffraction (Addison Wesley, London, 1956)

    Google Scholar 

  17. M. Ishii, K. Shibata, H. Nozaki, J. Solid State Chem. 105(2), 504 (1993)

    Article  Google Scholar 

  18. B. Minceva-Sukarova, M. Najdoski, I. Grozdanov, C. Chunnilall, J. Mol. Struct. 410, 267 (1997)

    Google Scholar 

  19. C.G. Munce, G.K. Parker, S.A. Holt, G.A. Hope, Colloids Surf. A Physicochem. Eng. Asp. 295(1), 152 (2007)

    Article  Google Scholar 

  20. D.M. Berg, R. Djemour, L. Gütay, S. Siebentritt, P.J. Dale, X. Fontane, V. Izquierdo-Roca, A. Pérez-Rodriguez, Appl. Phys. Lett. 100, 192103 (2012)

    Article  Google Scholar 

  21. U. Chalapathi, Y. Jayasree, S. Uthanna, V. Sundara Raja, Phys. Status Solidi A 210(11), 2384 (2013)

    Article  Google Scholar 

  22. S. Bagul, S. Chavhan, R. Sharma, J. Phys. Chem. Solids 68(9), 1623 (2007)

    Article  Google Scholar 

  23. A. Bollero, M. Grossberg, B. Asenjo, M. Gutiérrez, Surf. Coat. Technol. 204(5), 593 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Chalapathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chalapathi, U., Poornaprakash, B. & Park, SH. Effect of thiourea concentration on the growth and properties of Cu\(_{3}\)SnS\(_{4}\) thin films prepared by spray pyrolysis. J Mater Sci: Mater Electron 28, 2954–2961 (2017). https://doi.org/10.1007/s10854-016-5880-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5880-8

Keywords

Navigation