Skip to main content
Log in

Opto-Electronic Properties of Cu2ZnSnS4 Thin Films Grown by Ultrasonic Spray Pyrolysis

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Cu2ZnSnS4 (CZTS) films are deposited by ultrasonic spray pyrolysis technique for photovoltaic applications. The optoelectronic properties are studied by varying Zn and Sn compositions in the film. Films showed a tetragonal kesterite structure with preferential orientation along the (112) plane. The sample with the highest Cu concentration showed the lowest band gap of 1.46 eV. The grain size of the films is greater than 1 μm. Temperature-dependent conductivity studies revealed the presence of defects such as VCu, VS, VSn, CuZn, ZnCu, ZnSn and SnZn in the films. The sample with a Cu/(Zn + Sn) ratio of 0.75 showed Cu-poor and Zn-rich composition and better opto-electronic properties. The sample has p-type conductivity with a resistivity of 12 Ω cm. A [VCu–ZnCu] defect complex is identified in this sample along with a ZnSn acceptor level which is favorable for solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Herrmann, P. Kratzert, S. Weeke, M. Zimmer, J. Djordjevic-Reiss, R. Hunger, P. Lindberg, E. Wallin, O. Lundberg, and L. Stolt, in Proceedings of 40th IEEE Photovoltaic Specialists Conference, vol. 2775 (2014).

  2. S. Chen, X.G. Gong, A. Walsh, and S.-H. Wei, Appl. Phys. Lett. 94, 041903 (2009).

    Article  Google Scholar 

  3. K. Sun, C. Yan, F. Liu, J. Huang, F. Zhou, J.A. Stride, M. Green, and X. Hao, Adv. Energy Mater. 6, 1600046 (2016).

    Article  Google Scholar 

  4. W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, and D.B. Mitzi, Adv. Energy Mater. 4, 1301465 (2013).

    Article  Google Scholar 

  5. T. Washio, T. Shinji, S. Tajima, T. Fukano, T. Motohiro, K. Jimbo, and H. Katagiri, J. Mater. Chem. 22, 4021 (2012).

    Article  Google Scholar 

  6. K. Wang, O. Gunawan, T. Todorov, B. Shin, S.J. Chey, N.A. Bojarczuk, D. Mitzi, and S. Guha, Appl. Phys. Lett. 97, 143508 (2010).

    Article  Google Scholar 

  7. M. Aono, K. Yoshitake, and H. Miyazaki, Phys. Status Solidi 10, 1058 (2013).

    Article  Google Scholar 

  8. K. Moriya, K. Tanaka, and H. Uchiki, Jp. J. Appl. Phys. 46, 5780 (2007).

    Article  Google Scholar 

  9. T.P. Dhakal, C.-Y. Peng, R.R. Tobias, R. Dasharathy, and C.R. Westgate, Solar Energy 100, 23 (2014).

    Article  Google Scholar 

  10. T.R. Rana, N.M. Shinde, and J. Kim, Mater. Lett. 162, 40 (2016).

    Article  Google Scholar 

  11. E. Thimsen, S.C. Riha, S.V. Baryshev, A.B.F. Martinson, J.W. Elam, and M.J. Pellin, Chem. Mater. 24, 3188 (2012).

    Article  Google Scholar 

  12. M.E. Rodríguez, J. López-García, D. Sylla, X. Fontané, Y. Sánchez, S. López-Marino, V. Izquierdo-Roca, W. Riedel, W. Ohm, S. Gledhill, O. Vigil-Galán, and E. Saucedo, Phys. Status Solidi A 212, 126 (2015).

    Article  Google Scholar 

  13. N.M. Shinde, R.J. Deokate, and C.D. Lokhande, J. Anal. Appl. Pyrol. 100, 12 (2013).

    Article  Google Scholar 

  14. Y.B.K. Kumar, P.U. Bhaskar, G.S. Babu, and V.S. Raja, Phys. Status Solidi A 207, 149 (2010).

    Article  Google Scholar 

  15. X. Zeng, K.F. Tai, T.L. Zhang, C.W.J. Ho, X. Chen, A. Huan, T.C. Sum, and L.H. Wong, Sol. Energy Mater. Sol. Cells 124, 55 (2014).

    Article  Google Scholar 

  16. N. Nakayama and K. Ito, Appl. Surf. Sci. 92, 171 (1996).

    Article  Google Scholar 

  17. V.G. Rajeshmon, M.R.R. Menon, C. SudhaKartha, and K.P. Vijayakumar, J. Anal. Appl. Pyrol. 110, 448 (2014).

    Article  Google Scholar 

  18. W. Daranfed, M.S. Aida, N. Attaf, J. Bougdira, and H. Rinnert, J. Alloys Compd. 542, 22 (2012).

    Article  Google Scholar 

  19. S. Guitouni, M. Khammar, M. Messaoudi, N. Attaf, and M.S. Aida, J. Semicond. 37, 122001 (2016).

    Article  Google Scholar 

  20. K.G. Deepa and J. Nagaraju, J. Anal. Appl. Pyrol. 117, 141 (2016).

    Article  Google Scholar 

  21. K.G. Deepa, G. Chandrabose, and J. Nagaraju, J. Anal. Appl. Pyrol. 120, 356 (2016).

    Article  Google Scholar 

  22. S. Chen, A. Walsh, X. Gong, and S. Wei, Adv. Mater. 25, 1522 (2013).

    Article  Google Scholar 

  23. J.M. Skelton, A.J. Jackson, M. Dimitrievska, S.K. Wallace, and A. Walsh, APL Mater. 3, 041102 (2015).

    Article  Google Scholar 

  24. B.M. Sukarova, M. Najdoski, I. Grozdanov, and C.J. Chunnilall, J. Mol. Struct. 410–411, 267 (1997).

    Google Scholar 

  25. M. Jiang and X. Yan. doi:10.5772/50702.

  26. J.E. Jaffe and A. Zunger, Phys. Rev. B. 29, 1882 (1984).

    Article  Google Scholar 

  27. S. Chen, X.G. Gong, A. Walsh, and S.-H. Wei, Appl. Phys. Lett. 96, 021902 (2010).

    Article  Google Scholar 

  28. S. Chen, J. Yang, X.G. Gong, A. Walsh, and S.-H. Wei, Phys. Rev. B 81, 245204 (2010).

    Article  Google Scholar 

  29. M. Kumar, A. Dubey, N. Adhikari, S. Venkatesan, and Q. Qiao, Energy Environ. Sci. 8, 3134 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. G. Deepa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deepa, K.G., Sajeesh, T.H. & Jampana, N. Opto-Electronic Properties of Cu2ZnSnS4 Thin Films Grown by Ultrasonic Spray Pyrolysis. J. Electron. Mater. 47, 530–535 (2018). https://doi.org/10.1007/s11664-017-5803-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5803-3

Keywords

Navigation