Skip to main content
Log in

Dielectric properties and relaxation behavior of Sm substituted SrTiO3 ceramics sintered in nitrogen atmosphere

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

SrTiO3, Sm0.02Sr0.97TiO3, and Sr0.99TiO3 ceramics were prepared by a solid-state reaction method. The structural analysis show that all ceramics are cubic perovskite structure, and the A-site substitution of Sr2+ and Sr vacancies have some impact on the lattice parameters of Sm0.02Sr0.97TiO3, and Sr0.99TiO3 ceramics. Compared with the Sr0.99TiO3 ceramics sintered in N2, of which the dielectric constant was 305 (at 1 kHz and room temperature) and dielectric loss less than 0.007, the dielectric properties of Sm0.02Sr0.97TiO3 ceramics sintered in nitrogen (N2) perform a giant permittivity (>104) as well as a very low tanδ (mostly <0.04) over a broad temperature range from 25 to 200 °C. It could be proved that the Sr vacancies have no contribution to the giant permittivity of the Sm0.02Sr0.97TiO3 ceramics sintered in N2. Based on the relaxation behaviors, X-ray photoelectron spectroscopy (XPS) Spectrum and complex-impedance analysis of ceramics sintered in N2, the giant permittivity and low dielectric loss of the ceramics sintered in N2 were due to the donor doping and the oxygen vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Z. Wu, L. Li, Z. Lin, et al., Sci. Rep. 5, 0983 (2015)

    Google Scholar 

  2. J.R. Birchak, C.G. Gardner, J.E. Hipp et al., Proc. IEEE 62, 93–98 (1974)

    Article  Google Scholar 

  3. G.P. Gauthier, A. Courtay, G.M. Rebeiz, IEEE Trans. Antenna Propag. 45, 1310–1314 (1997)

    Article  Google Scholar 

  4. R.C. Kell, A.C. Greenham, G.C.E. Olds, J. Am. Ceram. Soc. 56, 352–354 (1973)

    Article  Google Scholar 

  5. D.E. Grupp, A.M. Goldman, J. Sci. 276, 392–394 (1997)

    Article  Google Scholar 

  6. G. Geneste, J.M. Kiat, Phys. Rev. B 77, 174101 (2008)

    Article  Google Scholar 

  7. G. Chen, J. Zheng, Z. Li, J. Mater. Sci.: Mater. Electron. 27, 2645–2651 (2015)

    Google Scholar 

  8. Z. Yu, C. Ang, P.M. Vilarinho et al., J. Appl. Phys. 83, 4874–4877 (1998)

    Article  Google Scholar 

  9. Z.Y. Shen, Y.M. Li, W.Q. Luo et al., J. Mater. Sci.: Mater. Electron. 24, 704–710 (2013)

    Google Scholar 

  10. D. Popovic, N. Romcevic, S. Spasovic et al., J. Alloys Compd. 425, 50–53 (2006)

    Article  Google Scholar 

  11. Wang X, Hu Q, Li L, et al. J. Appl. Phys. 112, 044106 (2012)

    Article  Google Scholar 

  12. G. Li, H. Liu, Z. Wang et al., J. Mater. Sci.: Mater. Electron. 25, 4418–4424 (2014)

    Google Scholar 

  13. Z. Wang, Z. Wang, M. Cao et al., Ceram. Int. 41, 12945–12949 (2015)

    Article  Google Scholar 

  14. R.D. Shannon, Acta Crystallogr. A 32, 751–767 (1976)

    Article  Google Scholar 

  15. H. Kishi, N. Kohzu, J. Sugino et al., J. Eur. Ceram. Soc. 19, 1043–1046 (1999)

    Article  Google Scholar 

  16. C. Ang, Z. Yu, L.E. Cross, Phys. Rev. B 62, 228 (2000)

    Article  Google Scholar 

  17. B.S. Chiou, S.T. Lin, J.G. Duh et al., J. Am. Ceram. Soc. 72, 1967–1975 (1989)

    Article  Google Scholar 

  18. C.C. Wang, L.W. Zhang, Phys. Rev. B 74, 024106 (2006)

    Article  Google Scholar 

  19. C. Ang, Z. Yu, L.E. Cross, Phys. Rev. B 62, 228 (2000)

    Article  Google Scholar 

  20. F. Werfel, Phys. Scripta 28, 92 (1983)

    Article  Google Scholar 

  21. M. Murata, K. Wakino, S. Ikeda, J. Electron. Spectrosc. 6, 459–464 (1975)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National College Students Innovation and entrepreneurship training program in Wuhan University of Technology(No.20151049701016) and Natural Science Foundation of China (No.51372191).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanxing Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Shan, X., Li, G. et al. Dielectric properties and relaxation behavior of Sm substituted SrTiO3 ceramics sintered in nitrogen atmosphere. J Mater Sci: Mater Electron 27, 10627–10633 (2016). https://doi.org/10.1007/s10854-016-5159-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5159-0

Keywords

Navigation