Skip to main content
Log in

Influence of Ni, Bi, and Sb additives on the microstructure and the corrosion behavior of Sn–Ag–Cu solder alloys

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sn–Ag–Cu solder alloys were usually modified using trace elements to achieve various properties. This paper investigated the effect of additives of Ni, Bi, and Sb on the microstructure and corrosion behavior of SAC alloys under application condition. Investigation was carried out using both solder alloy ingots and reflow-soldered surface insulation resistance interdigitated patterns by electrochemical methods under humid and corrosive conditions. Microstructure analysis was performed using X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy etc. Volta potential distribution in the bulk of the alloy was analyzed by Scanning Kelvin Probe Force Microscopy. Results show the passivation domain of five tested solder alloys did not influence the susceptibility of electrochemical migration under 5 V DC bias loading. Ni and Bi additives resulted in lower susceptibility of electrochemical migration due to homogeneity of the IMCs distribution in the bulk alloys. Bi precipitates in InnoLot alloy participated micro-galvanic corrosion as cathode rather than Ag containing phase as known before.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Can be provided when required.

References

  1. M. Wang, J. Wang, H. Feng, W. Ke, Corros. Sci. 63, 20 (2012)

    Article  CAS  Google Scholar 

  2. K. Maslinda, A.S. Anasyida, M.S. Nurulakmal, J. Mater. Sci. Mater. Electron. 27, 489 (2016)

    Article  CAS  Google Scholar 

  3. K.N. Subramanian, Lead-Free Electronic Solders: A Special Issue of the Journal of Materials Science: Materials in Electronics (Springer, New York, 2007)

    Book  Google Scholar 

  4. Z. Mei, H.A. Holder, H.A. Vander Plas, Hewlett-Packard J. 47, 91 (1996)

    Google Scholar 

  5. I.E. Anderson, J.C. Foley, B.A. Cook, J. Harringa, R.L. Terpstra, O. Unal, J. Electron. Mater. 30, 1050 (2001)

    Article  CAS  Google Scholar 

  6. W.R. Osório, J.E. Spinelli, C.R.M. Afonso, L.C. Peixoto, A. Garcia, Electrochim. Acta 56, 8891 (2011)

    Article  Google Scholar 

  7. K. Kanlayasiri, T. Ariga, J. Alloys Compd. 504, L5 (2010)

    Article  CAS  Google Scholar 

  8. Y. Liu, F. Sun, X. Li, J. Mater. Sci. Mater. Electron. 25, 2627 (2014)

    Article  CAS  Google Scholar 

  9. H.R. Kotadia, P.D. Howes, S.H. Mannan, Microelectron. Reliab. 54, 1253 (2014)

    Article  CAS  Google Scholar 

  10. C. Kanchanomai, Y. Miyashita, Y. Mutoh, J. Electron. Mater. 31, 456 (2002)

    Article  CAS  Google Scholar 

  11. J. Zhao, L. Qi, X.M. Wang, L. Wang, J. Alloys Compd. 375, 196 (2004)

    Article  CAS  Google Scholar 

  12. M.N. Collins, E. Dalton, J. Punch, J. Alloys Compd. 688, 164 (2016)

    Article  CAS  Google Scholar 

  13. Y.W. Wang, C.C. Chang, C.R. Kao, J. Alloys Compd. 478, L1 (2009)

    Article  CAS  Google Scholar 

  14. Y.W. Wang, Y.W. Lin, C.T. Tu, C.R. Kao, J. Alloys Compd. 478, 121 (2009)

    Article  CAS  Google Scholar 

  15. R.K. Kaushik, U. Batra, J.D. Sharma, J. Alloys Compd. 745, 446 (2018)

    Article  CAS  Google Scholar 

  16. F. Rosalbino, E. Angelini, G. Zanicchi, R. Carlini, R. Marazza, Electrochim. Acta 54, 7231 (2009)

    Article  CAS  Google Scholar 

  17. S.K. Kang, D.-Y. Shih, N.Y. Donald, W. Henderson, T. Gosselin, A. Sarkhel, N.Y. Charles Goldsmith, K.J. Puttlitz, W.K. Choi, JOM 55, 61 (2003)

    Article  CAS  Google Scholar 

  18. D. Minzari, M.S. Jellesen, P. Møller, R. Ambat, Corros. Sci. 53, 3366 (2011)

    Article  CAS  Google Scholar 

  19. X. Zhong, G. Zhang, Y. Qiu, Z. Chen, X. Guo, Corros. Sci. 74, 71 (2013)

    Article  CAS  Google Scholar 

  20. D.Q. Yu, W. Jillek, E. Schmitt, J. Mater. Sci. Mater. Electron. 17, 219 (2006)

    Article  CAS  Google Scholar 

  21. B. Liao, Z. Chen, Y. Qiu, G. Zhang, X. Guo, Corros. Sci. 112, 393 (2016)

    Article  CAS  Google Scholar 

  22. B. Medgyes, B. Horváth, B. Illés, T. Shinohara, A. Tahara, G. Harsányi, O. Krammer, Corros. Sci. 92, 43 (2015)

    Article  CAS  Google Scholar 

  23. D. Minzari, F.B. Grumsen, M.S. Jellesen, P. Møller, R. Ambat, Corros. Sci. 53, 1659 (2011)

    Article  CAS  Google Scholar 

  24. J.-Y. Jung, S.-B. Lee, H.-Y. Lee, Y.-C. Joo, Y.-B. Park, J. Electron. Mater. 37, 1111 (2008)

    Article  CAS  Google Scholar 

  25. B. Medgyes, B. Illés, R. Berényi, G. Harsányi, J. Mater. Sci. Mater. Electron. 22, 694 (2011)

    Article  CAS  Google Scholar 

  26. V. Verdingovas, M.S. Jellesen, R. Ambat, J. Electron. Mater. 44, 1116 (2015)

    Article  CAS  Google Scholar 

  27. V. Verdingovas, M.S. Jellesen, R. Ambat, Solder. Surf. Mt. Technol. 27, 146 (2015)

    Article  Google Scholar 

  28. K. Piotrowska, V. Verdingovas, R. Ambat, J. Mater. Sci. Mater. Electron. 29, 17834 (2018)

    Article  CAS  Google Scholar 

  29. K. Piotrowska, R. Ud Din, F.B. Grumsen, M.S. Jellesen, R. Ambat, J. Electron. Mater. 47, 4190 (2018)

    Article  CAS  Google Scholar 

  30. K. Piotrowska, M. Grzelak, R. Ambat, J. Electron. Mater. 48, 1207 (2019)

    Article  CAS  Google Scholar 

  31. L. Hua, C. Yang, Microelectron. Reliab. 51, 2274 (2011)

    Article  CAS  Google Scholar 

  32. G. Medgyes, Bálint; Tamási, Patrik; Hajdu, Ferenc; Lakatos–Varsányi, Roland Murányi Magda; Gál, László; Harsányi, in Proc. Int. Spring Semin. Electron. Technol. (2015), pp. 296–299.

  33. B. Medgyes, B. Illés, G. Harsányi, Period. Polytech. Electr. Eng. 57, 49 (2014)

    Article  Google Scholar 

  34. R. Piotrowska, Kamila; Lagana, Simone; Jellesen, Morten; Ambat, in 2019 Pan Pacific Microelectron. Symp. (Pan Pacific) (IEEE, Kauai, HI, USA, USA, 2019).

  35. Y. Miyazawa, T. Ariga, Mater. Trans. 42, 776 (2001)

    Article  CAS  Google Scholar 

  36. A.E. Hammad, Mater. Des. 50, 108 (2013)

    Article  CAS  Google Scholar 

  37. S. Farina, C. Morando, J. Mater. Sci. Mater. Electron. 26, 464 (2015)

    Article  CAS  Google Scholar 

  38. M. Hasnine, J.C. Suhling, M.J. Bozack, J. Mater. Sci. Mater. Electron. 28, 13496 (2017)

    Article  CAS  Google Scholar 

  39. M. Wang, J. Wang, H. Feng, W. Ke, J. Mater. Sci. Mater. Electron. 23, 148 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present research work was carried out as a part of work in CELCORR/CreCon consortium (www.celcorr.com). The authors would like to acknowledge the CELCORR/CreCon consortium for the funding support. Dr. Bálint Medgyes and Dr. Gábor Harsányi would like to thank the Pro Progressio Foundation (Hungary) for the financial support. Special thanks to BME for the material manufacturing process and Dr. Kai Dirscherl from DFM assisted the SKPFM analysis.

Funding

The project is funded by CELCORR/CreCon consortium (www.celcorr.com).

Author information

Authors and Affiliations

Authors

Contributions

All the testing experiments were conducted by FL and Dr. VV in Technical University of Denmark under supervisor of Prof. RA; Dr. KD in Danish National Metrology Institute provided the support of Volta potential mapping; BM and GH in Budapest University of Technology and Economics provided the support of material preparation and fabrication of the test boards.

Corresponding author

Correspondence to Feng Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Verdingovas, V., Dirscherl, K. et al. Influence of Ni, Bi, and Sb additives on the microstructure and the corrosion behavior of Sn–Ag–Cu solder alloys. J Mater Sci: Mater Electron 31, 15308–15321 (2020). https://doi.org/10.1007/s10854-020-04095-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04095-y

Navigation