Skip to main content
Log in

Synthesis of CuO-distributed carbon nanofiber: Alternative hybrid for solid propellants

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Carbon nanofibers (CNFs) possess superior catalytic abilities and high surface area. Moreover, energetic particles can be loaded on them by acting as carriers. The current study reports an electroless plating, effective deposition of copper particles (Cu) on the surface of CNFs. The prepared Cu–CNFs hybrid was annealed at 250 °C to form CuO–CNFs. Homogeneous loading of CuO particles on CNFs was revealed via TEM analysis, while the crystalline structure was studied using XRD analysis. In addition, ammonium perchlorate (AP) oxidizer with endothermic initial decomposition was mixed with the synthesized CuO–CNFs hybrid. Moreover, uniform distribution of AP on CuO–CNFs hybrid was verified using SEM microscopy. While DSC and TGA were used to determine CuO–CNFs catalytic performance, our results showed that only 1 wt % of CuO–CNFs could decrease the endothermic decomposition of AP by 12.7%. Moreover, the two main stages of exothermic decomposition were combined into one with 80% increase in the total generated heat. To sum up, our results clearly revealed the promising catalytic capabilities of CuO–CNFs for the applications of solid propellants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H.E. Fahd, S.E. Mostafa, Certain ballistic performance and thermal properties evaluation for extruded modified double-base propellants. Central Eur. J. Energ. Mater. 14(3), 621–635 (2017)

    Article  CAS  Google Scholar 

  2. S. Elbasuney, A. Fahd, H.E. Mostafa, Combustion characteristics of extruded double base propellant based on ammonium perchlorate/aluminium binary mixture. Fuel 208, 296–304 (2017)

    Article  CAS  Google Scholar 

  3. S. Elbasuney, A. Elsaidy, M. Kassem, H. Tantawy, Infrared signature of novel super-thermite (Fe2O3/Mg) fluorocarbon nanocomposite for effective countermeasures of infrared seekers. J. Inorg. Organomet. Polym. Mater. 28, 1718–1727 (2018)

    Article  CAS  Google Scholar 

  4. S. Elbasuney, A. Elsaidy, M. Kassem, H. Tantawy, R. Sadek, A. Fahd, M. Gobara, Super-thermite (Al/Fe2O3) fluorocarbon nanocomposite with stimulated infrared thermal signature via extended primary combustion zones for effective countermeasures of infrared seekers. J. Inorg. Organomet. Polym. Mater. 28, 2231–2240 (2018)

    Article  CAS  Google Scholar 

  5. Q.-L. Yan, M. Gozin, F.-Q. Zhao, A. Cohen, S.-P. Pang, Highly energetic compositions based on functionalized carbon nanomaterials. Nanoscale 8, 4799–4851 (2016)

    Article  CAS  Google Scholar 

  6. X. Liu, W.-L. Hong, F.-Q. Zhao, D.-Y. Tian, J.-X. Zhang, Q.-S. Li, Synthesis of CuO/CNTs composites and its catalysis on thermal decomposition of FOX-12. J. Solid Rocket Technol. 5, 019 (2008)

    Google Scholar 

  7. V.E. Zarko, A.A. Gromov, Energetic Nanomaterials Synthesis, Characterization, and Application. Book Technology and Engineering (Elsevier, Amsterdam, 2016)

    Google Scholar 

  8. N. Kubota, Propellants and Explosives Thermochemical Aspects of Combustion (Wiley-VCH Verlag GmbH & Co. KGaA, Winheim, 2002)

    Google Scholar 

  9. S. Elbasuney, Novel colloidal nanothermite particles (MnO2/Al) for advanced highly energetic systems. J. Inorg. Organomet. Polym. Mater. 28, 1793–1800 (2018)

    Article  CAS  Google Scholar 

  10. A. Davenas, Solid rocket propulsion technology, 1st Edition. Pergamon Press, Oxford (1992) https://www.elsevier.com/books/solid-rocket-propulsion-technology/davenas/978-0-08-040999-3.

  11. M.G. Zaky, A.M. Abdalla, R.P. Sahu, I.K. Puri, M. Radwan, S. Elbasuney, Nanothermite colloids: a new prospective for enhanced performance. Def. Technol. 15(3), 319–325 (2018)

    Article  Google Scholar 

  12. A.A. Sahraei, H.N. Saeed, A. Fathi, M. Baniassadi, S.S. Afrookhteh, M.K. Besharati Givi, Formation of homogenous copper film on MWCNTs by an efficient electroless deposition process. Sci. Eng. Compos. Mater. 24, 345–352 (2017)

    Article  CAS  Google Scholar 

  13. S. Arai, M. Endo, Carbon nanofiber–copper composite powder prepared by electrodeposition. Electrochem. Commun. 5, 797–799 (2003)

    Article  CAS  Google Scholar 

  14. S. Arai, M. Endo, N. Kaneko, Ni-deposited multi-walled carbon nanotubes by electrodeposition. Carbon 42, 641–644 (2004)

    Article  CAS  Google Scholar 

  15. K. Yamagishi, S. Yae, N. Okamoto, N. Fukumuro, H. Matsuda, Adsorbates formed on non-conducting substrates by two-step catalyzation pretreatment for electroless plating. J. Surf. Finish. Soc. Jpn. 54, 150–154 (2003)

    Article  CAS  Google Scholar 

  16. T. Van Gestel, D. Sebold, W.A. Meulenberg, M. Bram, H.-P. Buchkremer, Manufacturing of new nano-structured ceramic–metallic composite microporous membranes consisting of ZrO 2, Al 2 O 3, TiO 2 and stainless steel. Solid State Ionics 179, 1360–1366 (2008)

    Article  Google Scholar 

  17. S. Arai, M. Endo, S. Hashizume, Y. Shimojima, Nickel-coated carbon nanofibers prepared by electroless deposition. Electrochem. Commun. 6, 1029–1031 (2004)

    Article  CAS  Google Scholar 

  18. S.-M. Bak, K.-H. Kim, C.-W. Lee, K.-B. Kim, Mesoporous nickel/carbon nanotube hybrid material prepared by electroless deposition. J. Mater. Chem. 21, 1984–1990 (2011)

    Article  CAS  Google Scholar 

  19. M. Jagannatham, S. Sankaran, H. Prathap, Electroless nickel plating of arc discharge synthesized carbon nanotubes for metal matrix composites. Appl. Surf. Sci. 324, 475–481 (2015)

    Article  Google Scholar 

  20. L.-M. Ang, T.A. Hor, G.-Q. Xu, C.-H. Tung, S. Zhao, J.L. Wang, Electroless plating of metals onto carbon nanotubes activated by a single-step activation method. Chem. Mater. 11, 2115–2118 (1999)

    Article  CAS  Google Scholar 

  21. F. Wang, S. Arai, M. Endo, The preparation of multi-walled carbon nanotubes with a Ni–P coating by an electroless deposition process. Carbon 43, 1716–1721 (2005)

    Article  CAS  Google Scholar 

  22. M.A. Maksoud, G.S. El-Sayyad, A. Ashour, A.I. El-Batal, M.S. Abd-Elmonem, H.A. Hendawy, E. Abdel-Khalek, S. Labib, E. Abdeltwab, M. El-Okr, Synthesis and characterization of metals-substituted cobalt ferrite [MxCo(1–x)Fe2O4; (M= Zn, Cu and Mn; x= 0 and 0.5)] nanoparticles as antimicrobial agents and sensors for Anagrelide determination in biological samples. Mater. Sci. Eng. C 92, 644–656 (2018)

    Article  Google Scholar 

  23. A. Ashour, A.I. El-Batal, M.A. Maksoud, G.S. El-Sayyad, S. Labib, E. Abdeltwab, M. El-Okr, Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique. Particuology 40, 141–151 (2018)

    Article  CAS  Google Scholar 

  24. K. Pal, S. Sajjadifar, M.A. Elkodous, Y.A. Alli, F. Gomes, J. Jeevanandam, S. Thomas, A. Sigov, Soft, self-assembly liquid crystalline nanocomposite for superior switching. Electron. Mater. Lett. 15, 84–101 (2019)

    Article  CAS  Google Scholar 

  25. G. Govindasamy, K. Pal, M. Abd Elkodous, G.S. El-Sayyad, K. Gautam, P. Murugasan, Growth dynamics of CBD-assisted CuS nanostructured thin-film: optical, dielectric and novel switchable device applications. J. Mater. Sci. 30, 16463–16477 (2019)

    CAS  Google Scholar 

  26. P.K. Tiwari, A.K. Singh, V.P. Singh, S.M. Prasad, N. Ramawat, D.K. Tripathi, D.K. Chauhan, A.K. Rai, Liquid assisted pulsed laser ablation synthesized copper oxide nanoparticles (CuO-NPs) and their differential impact on rice seedlings. Ecotoxicol. Environ. Saf. 176, 321–329 (2019)

    Article  CAS  Google Scholar 

  27. P. Belavi, G. Chavan, L. Naik, R. Somashekar, R. Kotnala, Structural, electrical and magnetic properties of cadmium substituted nickel–copper ferrites. Mater. Chem. Phys. 132, 138–144 (2012)

    Article  CAS  Google Scholar 

  28. M.A. Maksoud, A. El-ghandour, G.S. El-Sayyad, A. Awed, R.A. Fahim, M. Atta, A. Ashour, A.I. El-Batal, M. Gobara, E. Abdel-Khalek, Tunable structures of copper substituted cobalt nanoferrites with prospective electrical and magnetic applications. J. Mater. Sci 30(5), 4908–4919 (2019)

    CAS  Google Scholar 

  29. K. Pal, M.A. Elkodous, M.M. Mohan, CdS nanowires encapsulated liquid crystal in-plane switching of LCD device. J. Mater. Sci. 29, 10301–10310 (2018)

    CAS  Google Scholar 

  30. S. Elbasuney, Dispersion characteristics of dry and colloidal nano-titania into epoxy resin. Powder Technol. 268, 158–164 (2014)

    Article  CAS  Google Scholar 

  31. M.A. Elsayed, M. Gobara, S. Elbasuney, Instant synthesis of bespoke nanoscopic photocatalysts with enhanced surface area and photocatalytic activity for wastewater treatment. J. Photochem. Photobiol. A 344, 121–133 (2017)

    Article  CAS  Google Scholar 

  32. M. Mahinroosta, Catalytic effect of commercial nano-CuO and nano-Fe2O3 on thermal decomposition of ammonium perchlorate. J. Nanostruct. Chem. 3, 47 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sherif Elbasuney or Gharieb S. El-Sayyad.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbasuney, S., Gobara, M., Zaky, M.G. et al. Synthesis of CuO-distributed carbon nanofiber: Alternative hybrid for solid propellants. J Mater Sci: Mater Electron 31, 8212–8219 (2020). https://doi.org/10.1007/s10854-020-03356-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03356-0

Keywords

Navigation