Skip to main content
Log in

Sol–gel synthesis, structural, and dielectric properties of terbium-modified \(\hbox {BaTiO}_{3}\) ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Tb-doped \(\hbox {BaTiO} _{3}\) nanoparticles are prepared using the sol–gel method. The characterization was carried out using X-ray diffraction powder (XRD), Fourier transforms infrared spectroscopy (FTIR), and scanning electron microscopy spectroscopy (SEM). The FTIR analysis does not provide clear evidence on the effect of the doping amount. All diffraction peaks were perfectly matched with the pure phase of \(\hbox {BaTiO} _{3}\). The tetragonal distortion factor is smoothly dependent on the doping amount. The grains decrease in size when Tb concentration is increased. The diffusion coefficient and phase transitions do not change greatly when introducing Tb into the crystal. Fitting values of \(\gamma\) also support the evidence of normal ferro-paraelectric transition. Doped materials have a dielectric constant greater than undoped material, a meanwhile low loss is observed. The presence of Tb inhibits the formation of oxygen vacancies and promotes the stabilization of the oxygen-deficient system with the support of tetragonal phase formation during the sintering process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Z. Nianshun, F. Huiqing, M. Jiangwei, R. Xiaohu, S. Yungui, Z. Yunyan, Ceram. Int. 44, 11331–11339 (2018)

    Article  Google Scholar 

  2. Z. Nianshun, F. Huiqing, R. Xiaohu, M. Jiangwei, B. Jie, G. Yijun, Z. Yunyan, J. Eur. Ceram. Soc. 39, 4096–4102 (2019)

    Article  Google Scholar 

  3. W. Jinbo, F. Huiqing, H. Bin, J. Hua, J. Mater. Sci. 30, 2479–2488 (2019)

    Google Scholar 

  4. D.Y. Lu, Y.Y. Peng, X.Y. Yu, X.Y. Sun, J. Alloys Compd. 681, 128 (2016)

    Article  CAS  Google Scholar 

  5. C.L. Freeman, J.A. Dawson, J.H. Harding, L.B. Ben, D.C. Sinclair, Adv. Funct. Mater. 23, 491 (2013)

    Article  CAS  Google Scholar 

  6. J. Zmojda, M. Kochanowicz, P. Miluski, D. Dorosz, Fibers 2, 150 (2014)

    Article  Google Scholar 

  7. B.D. Stojanovic, A.Z. Simoes, C.O. Paiva-santos, C. Jovalekic, V.V. Mitic, J.A. Varela, J. Eur. Ceram. Soc. 25, 1985 (2005)

    Article  CAS  Google Scholar 

  8. O. Grendal, A. Blichfeld, S. Skjærvø, W. van Beek, S. Selbach, T. Grande, M.-A. Einarsrud, Crystals 8, 253 (2018)

    Article  Google Scholar 

  9. G. Chen, C. Deng, X. Peng, C. Fu, W. Cai, R. Gao, X. Deng, Ferroelectrics 507, 127 (2017)

    Article  CAS  Google Scholar 

  10. F. Huiqing, L. Laijun, J. Electroceram. 22, 291–296 (2009)

    Article  Google Scholar 

  11. P. Olszewski, L. Twerd, J.K. Kowalczyk, Sci. China 59, 634602 (2016)

    Google Scholar 

  12. P. Nayak, T. Badapanda, S. Panigrahi, J. Mater. Sci. 28, 625 (2017)

    CAS  Google Scholar 

  13. R. Li, Q. Zhen, M. Drache, A. Rubbens, C. Estournes, R.-N. Vannier, Solid State Ionics 198, 6 (2011)

    Article  CAS  Google Scholar 

  14. W. Wang, L. Cao, W. Liu, G. Su, W. Zhang, Ceram. Int. 39, 7127 (2013)

    Article  CAS  Google Scholar 

  15. C. Wang, Y. Fan, X. Zhao, A. Du, R. Ma, X. Cao, J. Alloys Compd. 737, 213 (2018)

    Article  CAS  Google Scholar 

  16. J. Xufeng, D. Shihua, S. Tianxiu, L. Xu, P. Xiaosong, Y. Lihua, Ferroelectrics 488, 10 (2015)

    Article  Google Scholar 

  17. A. Ianculescu, L. Mitoseriu, J. Am. Ceram. Soc. 95, 3912 (2012)

    Article  Google Scholar 

  18. X.-H. Wang, R.-Z. Chen, Z.-L. Gui, L.-T. Li, Mater. Sci. Eng. B 99, 199 (2003)

    Article  Google Scholar 

  19. C. Singh, K.C. Singh, Ferroelectrics 518, 1–10 (2017)

    Article  Google Scholar 

  20. F. Rehman, L. Wang, H.-B. Jin, A. Bukhtiar, R. Zhang, Y. Zhao, J.-B. Li, J. Am. Ceram. Soc. 100, 602 (2017)

    Article  CAS  Google Scholar 

  21. E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd edn. (Wiley, 2005)

  22. R.D. Shannon, J. Appl. Phys. 73, 348 (1993)

    Article  CAS  Google Scholar 

  23. A. Miguel, G.J. Marty, M. Liliana, Nanoscale Ferroelectrics and Multiferroics: Key Processing and Characterization Issues, and Nanoscale Effects, 2 Volumes. (Wiley, 2016)

  24. Y. Daichi, H. Takuya, T. Hiroaki, S. Yukio, T. Takaaki, Key Eng. Mater. 582, 44–47 (2014)

    Google Scholar 

  25. T.L. Cottrell, The Strengths of Chemical Bonds, 2nd edn. (Butterworth, London, 1958)

    Google Scholar 

  26. H. Donnerberg, A. Birkholz, J. Phys. Condens. Matter 12, 8239 (2000)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Afqir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afqir, M., Elaatmani, M., Zegzouti, A. et al. Sol–gel synthesis, structural, and dielectric properties of terbium-modified \(\hbox {BaTiO}_{3}\) ceramics. J Mater Sci: Mater Electron 31, 3048–3056 (2020). https://doi.org/10.1007/s10854-019-02849-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02849-x

Navigation