Skip to main content
Log in

Impact of Mg doping on the structural, morphological and dielectric properties of PbTiO3 ceramics synthesized by consecutive combination of sol–gel and hydrothermal methods at low temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A new hybrid method based on the combination of the sol–gel process and the hydrothermal route was successfully used to prepare Pb1 − xMgxTiO3 (PMxT) powders with x = 0.0, 0.05, 0.1, 0.2 and 0.3 at low temperature below 200 °C. By modifying the value of x, the impact of the Pb/Mg ratio on the structural, morphological and dielectric characteristics was examined. Analysis of the compounds obtained using X-ray diffraction (XRD) and Rietveld refinement method shows that all the compounds crystallize in a pure perovskite-type phase, demonstrating that magnesium doping within the quadratic structure of PbTiO3 (P4mm) reduces the tetragonality (c/a) of the crystal lattice, and the proportion of the pseudo-cubic structure (Pm3m) increases progressively, reaching a maximum of 92.38% at a magnesium concentration of x = 0.3. Examination using a scanning electron microscope (SEM) shows that the average grain size decreases as a function of the Mg content, ranging from 4.371 μm for pure PbTiO3 to 0.412 μm for PT-Mg with x = 0.3. The frequency-dependent dielectric properties were studied by complex impedance spectroscopy in the temperature range from RT to 550 °C where a structural phase transition and two anomalies A and B were observed as a function of temperature at different measurement frequencies for all ceramics, showing a decrease in maximum permittivity (εrmax) with magnesium content down to a low value around 30% magnesium (ε = 1248.86), with no significant influence on the ferroelectric-paraelectric transition temperature. The nature of the transition was studied using the Curie-Weiss law, which showed that diffusivity increased with Mg2+ ion concentration. This may be explained by compositional fluctuations and structural disorder in the cation arrangement at crystallographic sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

On request, the underlying data, including dielectric measurements, pictures, and original X-ray and Rietveld refinement files, are available.

References

  1. Q. Lin et al., Vibrational spectroscopy and microwave dielectric properties of AY2Si3O10 (A = Sr, Ba) ceramics for 5G applications. Ceram. Int. 46(1), 1171–1177 (2020). https://doi.org/10.1016/j.ceramint.2019.09.086

    Article  CAS  Google Scholar 

  2. Y. Deng et al., Exploring the underlying mechanisms behind the increased far infrared radiation properties of perovskite-type Ce/Mn co-doped ceramics. Mater. Res. Bull. 109, 233–239 (2019). https://doi.org/10.1016/j.materresbull.2018.09.042

    Article  CAS  Google Scholar 

  3. H. Kagata, J. Kato, K. Nishimoto, T. Inoue, Dielectric properties of Pb-based perovskite substituted by Ti for B-site at microwave frequencies. Jpn. J. Appl. Phys. 32(9), 4332–4334 (1993). https://doi.org/10.1143/JJAP.32.4332/XML

    Article  ADS  CAS  Google Scholar 

  4. N. Ramadass, ABO3-type oxides—Their structure and properties—A bird’s eye view. Mater. Sci. Eng. 36(2), 231–239 (1978). https://doi.org/10.1016/0025-5416(78)90076-9

    Article  CAS  Google Scholar 

  5. K.R. Kandula, S.S.K. Raavi, S. Asthana, Correlation between structural, ferroelectric and luminescence properties through compositional dependence of Nd3 + ion in lead free Na0.5Bi0.5TiO3. J. Alloys Compd. 732, 233–239 (2018). https://doi.org/10.1016/J.JALLCOM.2017.10.186

    Article  CAS  Google Scholar 

  6. M. Faizan et al., Electronic and optical properties of vacancy ordered double perovskites A2BX6 (A = Rb, Cs; B = Sn, Pd, Pt; and X = Cl, Br, I): a first principles study. Sci. Rep. 11(1), 1–9 (2021). https://doi.org/10.1038/s41598-021-86145-x

    Article  CAS  Google Scholar 

  7. Y. Wang, J. Duan, X. Yang, L. Liu, L. Zhao, Q. Tang, The unique dielectricity of inorganic perovskites toward high-performance triboelectric nanogenerators. Nano Energy 69, 104418 (2020). https://doi.org/10.1016/J.NANOEN.2019.104418

    Article  CAS  Google Scholar 

  8. K.R. Tolman et al., Structural effect of aliovalent doping in lead perovskites. J. Solid State Chem. 225, 359–367 (2015). https://doi.org/10.1016/J.JSSC.2014.12.024

    Article  ADS  CAS  Google Scholar 

  9. C. Gu, J.S. Lee, Flexible Hybrid Organic-Inorganic Perovskite Memory. ACS Nano 10(5), 5413–5418 (2016). https://doi.org/10.1021/ACSNANO.6B01643/SUPPL_FILE/NN6B01643_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  10. F. Wang, I. Grinberg, A.M. Rappe, Band gap engineering strategy via polarization rotation in perovskite ferroelectrics. Appl. Phys. Lett. (2014). https://doi.org/10.1063/1.4871707/131066

    Article  PubMed  PubMed Central  Google Scholar 

  11. H.Y. Zhang et al., Observation of Vortex Domains in a Two-Dimensional Lead Iodide Perovskite Ferroelectric. J. Am. Chem. Soc. 142(10), 4925–4931 (2020). https://doi.org/10.1021/JACS.0C00371/SUPPL_FILE/JA0C00371_SI_011.CIF

    Article  CAS  PubMed  Google Scholar 

  12. G. Wang et al., Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics. Sci. Adv. (2015). https://doi.org/10.1126/SCIADV.1500613/SUPPL_FILE/1500613_SM.PDF

    Article  PubMed  PubMed Central  Google Scholar 

  13. L.C. Kretly, A.F.L. Almeida, R.S. De Oliveira, J.M. Sasaki, A.S.B. Sombra, Electrical and optical properties of CaCu3Ti4O12 (CCTO) substrates for microwave devices and antennas. Microw. Opt. Technol. Lett. 39(2), 145–150 (2003). https://doi.org/10.1002/MOP.11152

    Article  Google Scholar 

  14. P. Simon, Y. Gogotsi, Perspectives for electrochemical capacitors and related devices. Nature Mater. 19(11), 1151–1163 (2020). https://doi.org/10.1038/s41563-020-0747-z

    Article  ADS  CAS  Google Scholar 

  15. J. Huang, Y. Cao, M. Hong, P. Du, Ag-Ba0.75Sr0.25TiO3 composites with excellent dielectric properties. Appl. Phys. Lett. (2008). https://doi.org/10.1063/1.2836764/321147

    Article  PubMed  PubMed Central  Google Scholar 

  16. H. Tan, H. Takenaka, C. Xu, W. Duan, I. Grinberg, A.M. Rappe, First-principles studies of the local structure and relaxor behavior of Pb(Mg1/3Nb2/3) O3-PbTiO3 -derived ferroelectric perovskite solid solutions. Phys. Rev. B 97(17), 174101 (2018). https://doi.org/10.1103/PHYSREVB.97.174101/FIGURES/4/MEDIUM

    Article  ADS  CAS  Google Scholar 

  17. M.V. Raymond, D.M. Smyth, Defects and charge transport in perovskite ferroelectrics. J. Phys. Chem. Solids 57(10), 1507–1511 (1996). https://doi.org/10.1016/0022-3697(96)00020-0

    Article  ADS  CAS  Google Scholar 

  18. P.S. Pizani et al., Photoluminescence of disordered ABO3 perovskites. Appl. Phys. Lett. 77(6), 824–826 (2000). https://doi.org/10.1063/1.1306663

    Article  ADS  CAS  Google Scholar 

  19. X. Liu, J. Fu, G. Chen, First-principles calculations of electronic structure and optical and elastic properties of the novel ABX3-type LaWN3 perovskite structure. RSC Adv. 10(29), 17317–17326 (2020). https://doi.org/10.1039/C9RA10735E

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. M. Wang, G.L. Tan, Q. Zhang, Multiferroic Properties of Nanocrystalline PbTiO3 Ceramics. J. Am. Ceram. Soc. 93(8), 2151–2154 (2010). https://doi.org/10.1111/J.1551-2916.2010.03691.X

    Article  CAS  Google Scholar 

  21. A. Sani, M. Hanfland, D. Levy, Pressure and Temperature Dependence of the Ferroelectric–Paraelectric Phase Transition in PbTiO3. J. Solid State Chem. 167(2), 446–452 (2002). https://doi.org/10.1006/JSSC.2002.9653

    Article  ADS  CAS  Google Scholar 

  22. I. Grinberg et al., Structure and polarization in the high Tc ferroelectric Bi(Zn,Ti)O3-PbTiO3 solid solutions. Phys. Rev. Lett. 98(10), 107601 (2007). https://doi.org/10.1103/PHYSREVLETT.98.107601/FIGURES/2/MEDIUM

    Article  ADS  PubMed  Google Scholar 

  23. M.K. Suresh, J.K. Thomas, Structural and temperature dependent dielectric properties of nanocrystalline PbTiO3 synthesized through auto-igniting combustion technique. Solid State Sci. 98, 106025 (2019). https://doi.org/10.1016/J.SOLIDSTATESCIENCES.2019.106025

    Article  CAS  Google Scholar 

  24. P.M. Vilarinho, L. Zhou, M. Pöckl, N. Marques, J.L. Baptista, Dielectric Properties of Pb(Fe2/3W1/3)O3–PbTiO3 Solid-Solution Ceramics. J. Am. Ceram. Soc. 83(5), 1149–1152 (2000). https://doi.org/10.1111/J.1151-2916.2000.TB01346.X

    Article  CAS  Google Scholar 

  25. D.H. Kang, J.H. Kim, J.H. Park, K.H. Yoon, Characteristics of (Pb1-xSrx)TiO3 thin film prepared by a chemical solution processing. Mater. Res. Bull. 36, 1–2 (2001). https://doi.org/10.1016/S0025-5408(01)00511-6

    Article  Google Scholar 

  26. Z. Ren et al., Room-temperature ferromagnetism in Fe-doped PbTi O3 nanocrystals. Appl. Phys. Lett. (2007). https://doi.org/10.1063/1.2766839/326246

    Article  Google Scholar 

  27. J. Pal et al., A comparative study of structural and multiferroic properties of Ca, Sr and Ba doped 0.2BiFeO3–0.8PbTiO3 solid solutions. Mater. Charact. 189, 111983 (2022). https://doi.org/10.1016/J.MATCHAR.2022.111983

    Article  CAS  Google Scholar 

  28. A. Chandra, D. Pandey, A.K. Tyagi, G.D. Mukherjee, V. Vijayakumar, Phase transition in disordered ferroelectric ceramic Pb0.70 Ca0.30 Ti O3 under pressure. Appl. Phys. Lett. (2007). https://doi.org/10.1063/1.2719021/326955

    Article  Google Scholar 

  29. A.K.S. Chauhan, V. Gupta, K. Sreenivas, Dielectric and piezoelectric properties of sol–gel derived Ca doped PbTiO3. Mater. Sci. Eng.: B 130(1–3), 81–88 (2006). https://doi.org/10.1016/J.MSEB.2006.02.055

    Article  CAS  Google Scholar 

  30. X. Xing, J. Chen, J. Deng, G. Liu, Solid solution Pb1 – xSrxTiO3 and its thermal expansion. J. Alloys Compd. 360, 1–2 (2003). https://doi.org/10.1016/S0925-8388(03)00345-1

    Article  CAS  Google Scholar 

  31. F.M. Pontes et al., Structural and morphological characterization of Pb1–xBaxTiO3 thin films prepared by chemical route: an investigation of phase transition. Mater. Chem. Phys. 108(2–3), 312–318 (2008). https://doi.org/10.1016/J.MATCHEMPHYS.2007.10.004

    Article  CAS  Google Scholar 

  32. Z.S. Macedo, C.R. Ferrari, A.C. Hernandes, Self-propagation high-temperature synthesis of bismuth titanate. Powder Technol. 139(2), 175–179 (2004). https://doi.org/10.1016/J.POWTEC.2003.11.005

    Article  CAS  Google Scholar 

  33. M.M.S. Sanad, M.M. Rashad, Tuning the structural, optical, photoluminescence and dielectric properties of Eu2+-activated mixed strontium aluminate phosphors with different rare earth co-activators. J. Mater. Sci. 27(9), 9034–9043 (2016). https://doi.org/10.1007/S10854-016-4936-0/METRICS

    Article  CAS  Google Scholar 

  34. D. Harbaoui, M.M.S. Sanad, C. Rossignol, E.K. Hlil, N. Amdouni, S. Obbade, Synthesis and Structural, Electrical, and Magnetic Properties of New Iron-Aluminum Alluaudite Phases β-Na2Ni2M(PO4)3 (M = Fe and Al). Inorg. Chem. 56, 13051–13061 (2017). https://doi.org/10.1021/ACS.INORGCHEM.7B01880/ASSET/IMAGES/MEDIUM/IC-2017-01880P_0015.GIF

    Article  CAS  PubMed  Google Scholar 

  35. A.Y. Shenouda, M.M.S. Sanad, Synthesis, characterization and electrochemical performance of Li2NixFe1-xSiO4 cathode materials for lithium ion batteries. Bull. Mater. Sci. 40, 1055–1060 (2017). https://doi.org/10.1007/S12034-017-1449-2/METRICS

    Article  CAS  Google Scholar 

  36. M.M.S. Sanad, H.A. Abdellatif, E.M. Elnaggar, G.M. El-Kady, M.M. Rashad, Understanding structural, optical, magnetic and electrical performances of Fe- or Co-substituted spinel LiMn 1.5 Ni 0.5 O 4 cathode materials. Applied Physics A: Materials Science and Processing 125(2), 1–10 (2019). https://doi.org/10.1007/S00339-019-2445-8/METRICS

    Article  CAS  Google Scholar 

  37. Z.K. Heiba et al., Impact of Bi doping on the structural, optical, and dielectric features of nano ZnMn2O4. Ceram. Int. 50(3), 5498–5509 (2024). https://doi.org/10.1016/J.CERAMINT.2023.11.303

    Article  CAS  Google Scholar 

  38. K. Petcharoen, A. Sirivat, Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Mater. Sci. Engineering: B 177(5), 421–427 (2012). https://doi.org/10.1016/J.MSEB.2012.01.003

    Article  CAS  Google Scholar 

  39. H. Yu, S. Ouyang, S. Yan, Z. Li, T. Yu, Z. Zou, Sol–gel hydrothermal synthesis of visible-light-driven Cr-doped SrTiO3 for efficient hydrogen production. J Mater. Chem. 21(30), 11347–11351 (2011). https://doi.org/10.1039/C1JM11385B

    Article  CAS  Google Scholar 

  40. H.M. Rietveld, The Rietveld method. Phys. Scr. 89(9), 098002 (2014). https://doi.org/10.1088/0031-8949/89/9/098002

    Article  ADS  CAS  Google Scholar 

  41. A. Bendahhou et al., Structural study and temperature dependent relaxation and conduction mechanism of orthorhombic tungsten bronze Ba4La28/3(Zr0.05Ti0.95)18O54 ceramic. Mater. Res. Bull. 165, 112319 (2023). https://doi.org/10.1016/J.MATERRESBULL.2023.112319

    Article  CAS  Google Scholar 

  42. F. Chaou, I. Jalafi, A. Bendahhou, E.H. Yahakoub, S.E. Barkany, M. Abou-Salama, Dielectric and optical properties, high temperature conduction, and relaxation behavior of donor-element modified NBST material. Mater. Chem. Phys. 310, 128426 (2023). https://doi.org/10.1016/J.MATCHEMPHYS.2023.128426

    Article  CAS  Google Scholar 

  43. A. Bendahhou, P. Marchet, S.E. Barkany, M. Abou-salama, Structural and impedance spectroscopic study of Zn-substituted Ba5CaTi2Nb8O30 tetragonal tungsten bronze ceramics. J. Alloys Compd. 882, 160716 (2021). https://doi.org/10.1016/J.JALLCOM.2021.160716

    Article  CAS  Google Scholar 

  44. C. Fu, N. Chen, G. Du, Comparative studies of nickel doping effects at A and B sites of BaTiO3 ceramics on their crystal structures and dielectric and ferroelectric properties. Ceram. Int. 43(17), 15927–15931 (2017). https://doi.org/10.1016/J.CERAMINT.2017.08.169

    Article  CAS  Google Scholar 

  45. H.E. -Dnoub et al., Study of structural and dielectric properties of Nickel-doped BaTiO3 material. Mediterranean J. Chem. 8(3), 228–233 (2019). https://doi.org/10.13171/MJC8319051802HED

    Article  Google Scholar 

  46. A. Bendahhou, K. Chourti, S.E. Barkany, M. Abou-Salama, Correlation between crystal structure and dielectric response for orthorhombic tungsten bronze ceramics Ba4(Nd1-xSmx)28/3(Ti0.95Zr0.05)18O54. Ceram. Int. 48(14), 20446–20455 (2022). https://doi.org/10.1016/J.CERAMINT.2022.04.001

    Article  CAS  Google Scholar 

  47. F. Chaou et al., Optimisation of electrical conductivity and dielectric properties of Sn4+-doped (Na0.5Bi0.5)TiO3 perovskite. Ceram. Int. 49(11), 17940–17952 (2023). https://doi.org/10.1016/J.CERAMINT.2023.02.163

    Article  CAS  Google Scholar 

  48. Y. Ye, X. Li, Z. Cheng, M. Zhang, S. Qu, The influence of sintering temperature and pressure on microstructure and mechanical properties of carbonyl iron powder materials fabricated by electric current activated sintering. Vacuum 137, 137–147 (2017). https://doi.org/10.1016/J.VACUUM.2016.12.044

    Article  ADS  CAS  Google Scholar 

  49. Y. Sakout et al., Structural, Microstructural, and Dielectric Properties of Nickel-Doped PbTiO3 Ceramics Synthesized by the Hydrothermal Process. J. Electron. Mater. 53(1), 141–156 (2024). https://doi.org/10.1007/S11664-023-10741-Y/METRICS

    Article  ADS  CAS  Google Scholar 

  50. A. Shukla, R.N.P. Choudhary, Ferroelectric phase-transition and conductivity analysis of La3+/Mn4 + modified PbTiO3 nanoceramics. Physica B 405(11), 2508–2515 (2010). https://doi.org/10.1016/J.PHYSB.2010.02.040

    Article  ADS  CAS  Google Scholar 

  51. R. Gao et al., A comparative study on the structural, dielectric and multiferroic properties of Co0.6Cu0.3Zn0.1Fe2O4/Ba0.9Sr0.1Zr0.1Ti0.9O3 composite ceramics. Compos. B 166, 204–212 (2019). https://doi.org/10.1016/J.COMPOSITESB.2018.12.010

    Article  CAS  Google Scholar 

  52. R. Gao, Z. Wang, G. Chen, X. Deng, W. Cai, C. Fu, Influence of core size on the multiferroic properties of CoFe2O4@BaTiO3 core shell structured composites. Ceram. Int. 44, S84–S87 (2018). https://doi.org/10.1016/J.CERAMINT.2018.08.234

    Article  CAS  Google Scholar 

  53. R. Gao et al., Enhancement of magnetoelectric properties of (1-x)Mn0.5Zn0.5Fe2O4-xBa0.85Sr0.15Ti0.9Hf0.1O3 composite ceramics. J. Alloys Compd. 795, 501–512 (2019). https://doi.org/10.1016/J.JALLCOM.2019.05.013

    Article  CAS  Google Scholar 

  54. H.T. Martirena, J.C. Burfoot, Grain-size effects on properties of some ferroelectric ceramics. J. Phys. C 7, 3182 (1974). https://doi.org/10.1088/0022-3719/7/17/024

    Article  ADS  CAS  Google Scholar 

  55. K. Bouayad et al., Sol–gel processing and dielectric properties of (Pb1−yLay)(Zr0.52Ti0.48)O3 ceramics. Physica A 358(1), 175–183 (2005). https://doi.org/10.1016/J.PHYSA.2005.06.021

    Article  ADS  CAS  Google Scholar 

  56. F.Z. Fadil, T. Lamcharfi, F. Abdi, M. Aillerie, Synthesis and characterization of magnesium doped lead titanate. Cryst. Res. Technol. 46(4), 368–372 (2011). https://doi.org/10.1002/CRAT.201000665

    Article  CAS  Google Scholar 

  57. B. Tiwari, R.N.P. Choudhary, Frequency–temperature response of Pb(Zr0.65−xCexTi0.35)O3 ferroelectric ceramics: Impedance spectroscopic studies. J. Alloys Compd 493(1–2), 1–10 (2010). https://doi.org/10.1016/J.JALLCOM.2009.11.120

    Article  CAS  Google Scholar 

  58. K. Uchino, S. Nomura, Critical exponents of the dielectric constants in diffused-phase-transition crystals. Ferroelectrics 44(1), 55–61 (1982). https://doi.org/10.1080/00150198208260644

    Article  ADS  CAS  Google Scholar 

  59. D. Viehland, M. Wuttig, L.E. Cross, The glassy behavior of relaxor ferroelectrics. Ferroelectrics. 120(1), 71–77 (1991). https://doi.org/10.1080/00150199108216802

    Article  ADS  CAS  Google Scholar 

  60. A. Bendahhou, P. Marchet, A. El-Houssaine, S.E. Barkany, M. Abou-Salama, Relationship between structural and dielectric properties of Zn-substituted Ba 5 CaTi 2 – x Zn x Nb 8 O 30 tetragonal tungsten bronze. CrystEngComm 23(1), 163–173 (2021). https://doi.org/10.1039/D0CE01561J

    Article  CAS  Google Scholar 

  61. L.H. Omari, L. Hajji, M. Haddad, T. Lamhasni, C. Jama, Synthesis, structural, optical and electrical properties of La-modified Lead Iron Titanate ceramics for NTCR thermo-resistance based sensors. Mater. Chem. Phys. 223, 60–67 (2019). https://doi.org/10.1016/J.MATCHEMPHYS.2018.10.035

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We really appreciate the assistance and support provided by the “Fez Regional University Interface Center” throughout the sample testing phase of this project. We extend our heartfelt gratitude to the anonymous reviewers for their meticulous editing and insightful comments on the article. The faculty of science and technology of fez (FSTF) physics department is renowned for its useful support in documenting dielectric measurements.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

E. H. Lahrar helped with the data analysis, drafting of the first draft, research, and visualization. H. Essaoudi assisted with editing and supervision.

Corresponding author

Correspondence to E. H. Lahrar.

Ethics declarations

Conflict of interest

The authors state that none of the work presented in this study may have been influenced by any known conflicting financial interests or personal relationships.

Ethical approval and consent to participate

Not applicable; neither humans nor animals were used in this study.

Consent for publication

The authors have approved the content of the manuscript and authorized its publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahrar, E.H., Essaoudi, H. Impact of Mg doping on the structural, morphological and dielectric properties of PbTiO3 ceramics synthesized by consecutive combination of sol–gel and hydrothermal methods at low temperature. J Mater Sci: Mater Electron 35, 419 (2024). https://doi.org/10.1007/s10854-024-12206-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12206-2

Navigation