Skip to main content
Log in

Implantation of low-energy Ni12+ ions to change structural and strength characteristics of ceramics based on SiC

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The paper presents results of studying the applicability of ion implantation to increase the strength characteristics and corrosion resistance of carbide ceramics. According to the X-ray phase analysis, it was found that an increase in the irradiation fluence leads to a slight change in the magnitudes of displacements and defect concentration, which indicates the absence of amorphization processes of the crystal structure. It is established that a decrease in the lattice volume leads to an increase in ceramics density and a decrease in porosity. In this case, a change in the average crystallite size leads to a change in the concentration of dislocation defects near the grain boundaries, which also indicates a change in the defect structure as a result of irradiation. A decrease in the integral porosity of the surface layer, as well as changes in the dislocation and vacancy densities in the surface layer of ceramics, leads to an increase in the strength and crack resistance of the surface layer. That has a significant effect on reducing the rate of degradation of ceramics in aggressive media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Matzke, Atomic mechanisms of mass transport in ceramic nuclear fuel materials. J. Chem. Soc., Faraday Trans. 86(8), 1243–1256 (1990)

    CAS  Google Scholar 

  2. L.W. Hobbs et al., Radiation effects in ceramics. J. Nucl. Mater. 216, 291–321 (1994)

    CAS  Google Scholar 

  3. H.-C. Zur Loye et al., Hierarchical materials as tailored nuclear waste forms: a perspective. Chem. Mater. 30(14), 4475–4488 (2018)

    CAS  Google Scholar 

  4. B. Heidrich et al., Roadmap for the application of ion beam technologies to the challenges of nuclear energy technologies. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 441, 41–45 (2019)

    CAS  Google Scholar 

  5. A. Prasitthipayong et al., Micro mechanical testing of candidate structural alloys for Gen-IV nuclear reactors. Nucl Mater Energy 16, 34–45 (2018)

    Google Scholar 

  6. S.V. Trukhanov et al., Preparation and investigation of structure, magnetic and dielectric properties of (BaFe11.9Al0. 1O19) 1-x-(BaTiO3) x bicomponent ceramics. Ceram. Int. 44(17), 21295–21302 (2018)

    CAS  Google Scholar 

  7. S.V. Trukhanov et al., Temperature evolution of the structure parameters and exchange interactions in BaFe12−xInxO19. J. Magn. Magn. Mater. 466, 393–405 (2018)

    CAS  Google Scholar 

  8. N. Baluc et al., On the potentiality of using ferritic/martensitic steels as structural materials for fusion reactors. Nucl. Fusion 44(1), 56 (2003)

    Google Scholar 

  9. C. Deo et al., Modeling and simulation of irradiation hardening in structural ferritic steels for advanced nuclear reactors. J. Nucl. Mater. 377(1), 136–140 (2008)

    CAS  Google Scholar 

  10. A. Kozlovskiy et al., Optical and structural properties of AlN ceramics irradiated with heavy ions. Optical Mater 91, 130–137 (2019)

    CAS  Google Scholar 

  11. L.K. Mansur et al., Materials needs for fusion, Generation IV fission reactors and spallation neutron sources–similarities and differences. J. Nucl. Mater. 329, 166–172 (2004)

    Google Scholar 

  12. H. Lange, W. Gerhard, W. Gerhard, Silicon nitride—from powder synthesis to ceramic materials. Angew. Chem. Int. Ed. Engl. 30(12), 1579–1597 (1991)

    Google Scholar 

  13. A. Evtukh et al., Electron field emission from nanostructured surfaces of GaN and AlGaN. Phys. Status Solidi C 5(2), 425–430 (2008)

    CAS  Google Scholar 

  14. L. Wang et al., An experimental investigation on laser assisted waterjet micro-milling of silicon nitride ceramics. Ceram. Int. 44(5), 5636–5645 (2018)

    CAS  Google Scholar 

  15. K. Dukenbayev et al., Investigation of radiation resistance of AlN ceramics. Vacuum 159, 144–151 (2019)

    CAS  Google Scholar 

  16. Y. Li et al., Fabrication of Si2N2O ceramic with silicon kerf waste as raw material. Ceram. Int. 44(5), 5581–5586 (2018)

    CAS  Google Scholar 

  17. V. Litovchenko, A. Evtukh, A. Grygoriev, Characterization of GaN nanostructures by electron field and photo-field emission. Opto-Electron. Rev. 25(3), 251–262 (2017)

    Google Scholar 

  18. C. Ma et al., Photoluminescence and optical temperature sensing in Sm3 + -doped Ba0. 85Ca0. 15Ti0. 90Zr0. 10O3 lead-free ceramics. Ceram. Int. 45(1), 588–594 (2019)

    CAS  Google Scholar 

  19. A. Kozlovskiy et al., Structure and corrosion properties of thin TiO2 films obtained by magnetron sputtering. Vacuum 164, 224–232 (2019)

    CAS  Google Scholar 

  20. D. Lin et al., Improving the sealing performance of glass-ceramics for SOFCs applications by a unique ‘composite’approach: a study on Na2O-SiO2 glass-ceramic system. J. Eur. Ceram. Soc. 38(13), 4488–4494 (2018)

    CAS  Google Scholar 

  21. N.S. Mehta et al., Effect of ZrO2 on the sintering behavior, strength and high-frequency dielectric properties of electrical ceramic porcelain insulator. Mater Res Express 5(1), 015202 (2018)

    Google Scholar 

  22. D.-W. Tan et al., Cutting performance and wear mechanism of TiB2-B4C ceramic cutting tools in high speed turning of Ti6Al4V alloy. Ceram. Int. 44(13), 15495–15502 (2018)

    CAS  Google Scholar 

  23. Q. Zhou et al., A linear polycarbosilane containing m-carborane units: synthesis and characterization as precursor for SiC/B4C ceramics. High Perform. Polym. 30(10), 1267–1275 (2018)

    CAS  Google Scholar 

  24. Z. Yin et al., Graphene nanosheets toughened TiB2-based ceramic tool material by spark plasma sintering. Ceram. Int. 44(8), 8977–8982 (2018)

    CAS  Google Scholar 

  25. M. Li et al., Crack-healing behavior of Al2O3–TiB2–TiSi2 ceramic material. Ceram. Int. 44(2), 2132–2137 (2018)

    CAS  Google Scholar 

  26. M.J. Presby et al., Characterization and simulation of foreign object damage in curved and flat SiC/SiC ceramic matrix composites. Ceram. Int. 45(2), 2635–2643 (2019)

    CAS  Google Scholar 

  27. Z. Hu, K. Ning, L. Kathy, Study of spark plasma sintered nanostructured ferritic steel alloy with silicon carbide addition. Mater. Sci. Eng., A 670, 75–80 (2016)

    CAS  Google Scholar 

  28. N. Roux et al., Low-temperature tritium releasing ceramics as potential materials for the ITER breeding blanket. J. Nucl. Mater. 233, 1431–1435 (1996)

    Google Scholar 

  29. S. Jiang et al., Discrete element simulation of SiC ceramic containing a single pre-existing flaw under uniaxial compression. Ceram. Int. 44(3), 3261–3276 (2018)

    CAS  Google Scholar 

  30. V. Casalegno et al., CaO-Al2O3 glass-ceramic as a joining material for SiC based components: a microstructural study of the effect of Si-ion irradiation. J. Nucl. Mater. 501, 172–180 (2018)

    CAS  Google Scholar 

  31. D.S. Klygach et al., Magnetic and microwave properties of carbonyl iron in the high frequency range. J. Magn. Magn. Mater. 490, 165493 (2019)

    CAS  Google Scholar 

  32. Y. Liu et al., Smoothed particle hydrodynamics simulation and experimental analysis of SiC ceramic grinding mechanism. Ceram. Int. 44(11), 12194–12203 (2018)

    CAS  Google Scholar 

  33. S. Dong et al., Strong effect of atmosphere on the microstructure and microwave absorption properties of porous SiC ceramics. J. Eur. Ceram. Soc. 38(1), 29–39 (2018)

    Google Scholar 

  34. H. Wang et al., Synthesis of a foam ceramic based on ceramic tile polishing waste using SiC as foaming agent. Ceram. Int. 44(9), 10078–10086 (2018)

    CAS  Google Scholar 

  35. K. Van Loo et al., Compatibility of SiC–and MAX phase-based ceramics with a KNO3-NaNO3 molten solar salt. Solar Energy Mater Solar Cells 195, 228–240 (2019)

    Google Scholar 

  36. L. Liu et al., Dielectric relaxations and phase transition in laser crystals Gd2SiO5 and Yb-Doped Gd2SiO5. J. Am. Ceram. Soc. 97(6), 1823–1828 (2014)

    CAS  Google Scholar 

  37. N. Murayama et al., High-temperature electro-ceramics and their application to SiC power modules. Ceram. Int. 44(4), 3523–3530 (2018)

    CAS  Google Scholar 

  38. J.M. Shi et al., Strengthening the ZrC-SiC ceramic and TC4 alloy brazed joint using laser additive manufactured functionally graded material layers. Ceram. Int. 44(10), 11060–11069 (2018)

    CAS  Google Scholar 

  39. K. Dukenbayev et al., Study of the effect of irradiation with Fe7 + ions on the structural properties of thin TiO2 foils. Mater Res Express 6(4), 046309 (2019)

    Google Scholar 

  40. G.Z. Chen et al., Optical properties of Dy3 + ion in PbF2 laser crystal. Laser Phys. Lett. 10(11), 115801 (2013)

    Google Scholar 

  41. C. Li et al., Influence of strain rate effect on material removal and deformation mechanism based on ductile nanoscratch tests of Lu2O3 single crystal. Ceram. Int. 44(17), 21486–21498 (2018)

    CAS  Google Scholar 

  42. A. Kozlovskiy et al., Dynamics of changes in structural properties of AlN ceramics after Xe + 22 ion irradiation. Vacuum 155, 412–422 (2018)

    CAS  Google Scholar 

  43. Z. Yin et al., Effect of Ni and graphene on microstructure and toughness of titanium boride ceramic tool material prepared by spark plasma sintering. Ceram. Int. 44(16), 20299–20305 (2018)

    CAS  Google Scholar 

  44. B. Su et al., Damage development of sintered SiC ceramics with the depth variation in Ar ion-irradiation at 600C. J. Eur. Ceram. Soc. 38(5), 2289–2296 (2018)

    CAS  Google Scholar 

  45. V. Lisitsyn et al., Luminescence of the tungsten-activated MgF2 ceramics synthesized under the electron beam. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 435, 263–267 (2018)

    CAS  Google Scholar 

  46. K. Ning, L. Kathy, Ion irradiation effect on spark plasma sintered silicon carbide ceramics with nanostructured ferritic alloy aid. J. Am. Ceram. Soc. 101(8), 3662–3673 (2018)

    CAS  Google Scholar 

  47. D.I. Tishkevich et al., Electrochemical deposition regimes and critical influence of organic additives on the structure of Bi films. J. Alloy. Compd. 735, 1943–1948 (2018)

    CAS  Google Scholar 

  48. A. Kozlovskiy et al., Influence of He-ion irradiation of ceramic AlN. Vacuum 163, 45–51 (2019)

    CAS  Google Scholar 

  49. A.V. Trukhanov et al., Control of structural parameters and thermal conductivity of BeO ceramics using heavy ion irradiation and post-radiation annealing. Ceram. Int. 45(12), 15412–15416 (2019)

    CAS  Google Scholar 

  50. V.N. Loginov et al., Production of intense metal ion beams at the DC-60 cyclotron. J. Instrum. 14(02), C02007 (2019)

    CAS  Google Scholar 

  51. Zdorovets M, et al. (2014) Accelerator complex based on DC-60 cyclotron. In: Proceedings of the 24th Russian Particle Accelerator Conference, pp 287–289

  52. M. Malo et al., Stability of porous SiC based materials under relevant conditions of radiation and temperature. J. Nucl. Mater. 509, 54–61 (2018)

    CAS  Google Scholar 

  53. K.A. Terrani et al., Irradiation stability and thermo-mechanical properties of NITE-SiC irradiated to 10 dpa. J. Nucl. Mater. 499, 242–247 (2018)

    CAS  Google Scholar 

  54. Koyanagi T, Katoh Y, Lance M (2018) 3.2 Advanced characterization of irradiation defects in silicon carbide: Raman spectroscopy. Fusion Mater Res Oak Ridge Nat Lab Fiscal Year 2018: 23

  55. M.A. Almessiere et al., The effect of Nb substitution on magnetic properties of BaFe12O19 nanohexaferrites. Ceram. Int. 45(2), 1691–1697 (2019)

    CAS  Google Scholar 

  56. D.I. Tishkevich et al., Effect of the synthesis conditions and microstructure for highly effective electron shields production based on Bi coatings. ACS Appl Energy Mater 1(4), 1695–1702 (2018)

    CAS  Google Scholar 

  57. T.I. Zubar et al., Control of growth mechanism of electrodeposited nanocrystalline NiFe films. J. Electrochem. Soc. 166(6), D173–D180 (2019)

    CAS  Google Scholar 

  58. T.I. Zubar et al., Anomalies in Ni-Fe nanogranular films growth. J. Alloy. Compd. 748, 970–978 (2018)

    CAS  Google Scholar 

  59. M. Zdorovets et al., Defect formation in AlN after irradiation with He2 + ions. Ceram. Int. 45(7), 8130–8137 (2019)

    CAS  Google Scholar 

  60. T. Gladkikh et al., Changes in optical and structural properties of AlN after irradiation with C2 + ions of 40 keV. Vacuum 161, 103–110 (2019)

    CAS  Google Scholar 

  61. A. Kozlovskiy, Influence of irradiation temperature on properties change of AlN ceramics. Vacuum 158, 93–100 (2018)

    CAS  Google Scholar 

  62. A. Kozlovskiy et al., Effect of swift heavy ions irradiation on AlN ceramics properties. Ceram. Int. 44(16), 19787–19793 (2018)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Kozlovskiy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tinishbaeva, K., Kadyrzhanov, K.K., Kozlovskiy, A.L. et al. Implantation of low-energy Ni12+ ions to change structural and strength characteristics of ceramics based on SiC. J Mater Sci: Mater Electron 31, 2246–2256 (2020). https://doi.org/10.1007/s10854-019-02756-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02756-1

Navigation