Skip to main content
Log in

Surface Modification of Corundum Ceramics by Argon Ion Beam

  • NEW TECHNOLOGIES OF PREPARATION AND TREATMENT OF MATERIALS
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The mechanical properties of near-surface layers of aluminum oxide ceramic treated with a continuous ion beam of argon are investigated. The phase and structural changes of the modified near-surface layers were analyzed by X-ray diffraction analysis and scanning electron microscopy, respectively. Samples for research were made from corundum plates used in microelectronics. Ion processing was carried out using an ILM-1 ion implanter equipped with a Pulsar-1M ion source based on a low-pressure glow discharge with a cold hollow cathode. Argon ions with energy of 30 keV and ion current density j = 300 μA/cm2 were used for the irradiation. Two irradiation modes with the fluences of 1016 and 1017 cm–2 were implemented. It was established that the ion treatment promotes the manifestation of the initial grain structure of a sample and increases the mechanical characteristics (modulus of elasticity and nanohardness) of near-surface layers of samples. According to the X-ray diffraction data, after the action of an ion beam, there is a decrease in the size of the coherent scattering region with respect to the initial state. The irradiation leads to an increase in the values of crystal lattice microstrains. Possible mechanisms of modifying the ceramic surface are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Grishunin, V.A., Gromov, V.E., Ivanov, Yu.F., Teresov, A.D., and Konovalov, S.V., Evolution of the phase composition and defect substructure of rail steel subjected to high intensity electron-beam treatment, J. Surf. Invest., 2013, vol. 5, pp. 990–995.

    Article  CAS  Google Scholar 

  2. Surzhikov, A.P., Frangulyan, T.S., Ghyngazov, S.A., and Koval, N.N., Structural-phase transformations in nearsurface layers of alumina-zirconium ceramics induced by low-energy high-current electron beams, Nucl. Instrum. Methods Phys. Res., Sect. B, 2009, vol. 7, pp. 1072–1076.

    Google Scholar 

  3. Gromov, V.E., Gorbunov, S.V., Ivanov, Y.F., Vorobiev, S.V., and Konovalov, S.V., Formation of surface gradient structural-phase states under electron-beam treatment of stainless steel, J. Surf. Invest., 2011, vol. 5, pp. 974–978.

    Article  CAS  Google Scholar 

  4. Ivanov, Y., Alsaraeva, K., Gromov, V., Konovalov, S., and Semina, O., Evolution of Al-19.4Si alloy surface structure after electron beam treatment and high cycle fatigue, Mater. Sci. Technol., 2015, vol. 13, pp. 1523–1529.

    Article  CAS  Google Scholar 

  5. Šugár, P., Frnč iík, M., Šugárová, J., and Sahul, M., Laser beam milling of alumina ceramics—the impact on material removal efficiency and machined surface morphology, Solid State Phenom., 2017, vol. 261, pp. 143–150.

  6. Savruk, E.V. and Smirnov, S.V., Analysis of the alumina ceramics structure after electron and laser treatment, Zavod. Lab., Diagn. Mater., 2011, no. 6, pp. 32–35.

  7. Renk, T.J., Provencio, P.P., Prasad, S.V., Shlapakovski, S.S., Petrov, A., Yatsui, A., Kiyoshi, J., and Weihua, S.H., Materials modification using intense ion beams, Proc. IEEE, 2004, vol. 7, pp. 1057–1081.

    Article  CAS  Google Scholar 

  8. Maslyaev, S.A., Morozov, E.V., Romakhin, P.A., Pimenov, V.N., Gribkov, V.A., Tikhonov, A.N., Bon-darenko, G.G., Dubrovsky, A.V., Kazilin, E.E., Sasinovskaya, I.P., and Sinitsyna, O.V., Damage of Al2O3 ceramics under the action of pulsed ion and plasma fluxes and laser irradiation, Inorg. Mater.: Appl. Res., 2016, vol. 7, no. 3, pp. 330–339.

    Article  Google Scholar 

  9. Ivanov, L.I., Pimenov, V.N., and Gribkov, V.A., Interaction of power pulsed fluxes of energy with materials, Fiz. Khim. Obrab. Mater., 2008, no. 1, pp. 23–37.

  10. Schmidt, B. and Wetzig, K., Ion Beams in Materials Processing and Analysis, New York: Springer Verlag, 2013.

    Book  Google Scholar 

  11. Ovchinnikov, V.V., Makhin’ko, F.F., and Solomonov, V.I., Thermal-spikes temperature measurement in pure metals under argon ion irradiation (E = 5–15 keV), J. Phys.: Conf. Ser., 2015, vol. 652, pp. 1–8.

    Google Scholar 

  12. Elke, W. and Werner, W., Ion Beam Modification of Solids, Springer Series in Surface Sciences, New York: Springer-Verlag, 2016.

  13. Zatsepin, D.A., Cholakh, S.O., and Vainshtein, I.A., Ionnaya modifikatsiya funktsional’nykh materialov (Ion Modification of Functional Materials), Yekaterinburg: Ural. Fed. Univ., 2014.

  14. Romanov, I.G. and Tsareva, I.N., High-power pulsed ion beam modification of the surface properties of alumina ceramics, Tech. Phys. Lett., 2001, vol. 27, no. 8, pp. 695–697.

    Article  CAS  Google Scholar 

  15. Ghyngazov, S.A., Vasil’ev, I.P., Surzhikov, A.P., Frangulyan, T.S., and Chernyavskii, A.V., Ion processing of zirconium ceramics by high-power pulsed beams, Tech. Phys., 2015, vol. 60, no. 1, pp. 128–132.

    Article  CAS  Google Scholar 

  16. Kostenko, V., Pavlov, S., and Nikolaeva, S., Influence of a high-power pulsed ion beam on the mechanical properties of corundum ceramics, IOP Conf. Ser.: Mater. Sci. Eng., 2018, vol. 289, pp. 1–7.

  17. Fedorov, D.G. and Seleznev, B.I., Formation of structures of Schottky diodes on GaN with the use of ion implantation, Elektron. Mirkoelektron. SVCh, 2016, no. 1, pp. 190–192.

  18. Aleksandrov, P.A., Demakov, K.D., Shemardov, S.G., and Belova, N.E., Application of ion implantation for the modification of silicon-on-sapphire epitaxial systems, their structure, and properties, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2017, vol. 11, no. 4, pp. 790–800.

    Article  CAS  Google Scholar 

  19. Anderson, J.T., Greenlee, J., Feigelson, B., Hite, J., Kub, J.F., and Hobart, K., Improved vertical GaN Schottky diodes with ion implanted junction termination extension, ECS J. Solid State Sci. Technol., 2016, vol. 5, pp. 176–178.

    Article  CAS  Google Scholar 

  20. Sikharulidze, G.G., Generation of an ion beam in a glow-discharge source, Instrum. Exp. Tech., 2009, vol. 52, no. 2, pp. 249–252.

    Article  CAS  Google Scholar 

  21. Nakhlestkin, A.A. and Arkhireev, A.G., Ion accelerators, Materialy I Mezhdunarodnoi molodezhnoi nauchnoi konferentsii “Molodezh’ v nauke: Novye argumenty,” g. Lipetsk, Rossiya, 25 dekabrya 2014 g. (Proc. I Int. Youth Sci. Conf. “Youth in Science: New Arguments,” Lipetsk, Russia, December 25, 2014), Gorbenko, A.V., Ed., Lipetsk: Argument, 2015, part 1, pp. 14–16.

  22. Frolova, V.P., Generation of high-charge bismuth ions in a vacuum-spark ion source, Elektron. Sredstva Sist. Uprav., 2015, no. 1, pp. 230–233.

  23. Goncharov, L.A. and Grigor’yan, V.G., Ion sources for ion-beam technology operations, Prikl. Fiz., 2007, no. 5, pp. 67–70.

  24. Ryabchikov, A.I., Accelerators of charged particles SINP radiant units and their use in science and technology, Izv. Tomsk. Politekh. Univ., 2000, no. 1, pp. 17–43.

  25. Vlasov, I., Panin, S., Sergeev, V.P., Naidfeld, V., Kalashnikov, M.P., Bogdanov, O., and Ovechkin, B., Zr+ ion-beam surface treatment of 30CrMnSiNi2 steel for improving its fatigue durability, Adv. Mater. Res., 2014, vol. 872, pp. 219–224.

    Article  CAS  Google Scholar 

  26. Demin, A.S., Morozov, E.V., Maslyaev, S.A., Pimenov, V.N., Gribkov, V.A., Demina, E.V., Sasinovskaya, I.P., Sirotinkin, V.P., Sprygin, U.S., Bondarenko, G.G., Tikhonov, A.N., and Gaidar, A.I., The influence of a powerful stream of deuterium ions and deuterium plasma on the structural state of the surface layer of titanium, Inorg. Mater.: Appl. Res., 2017, vol. 8, no. 3, pp. 412–418.

    Article  Google Scholar 

  27. Uglov, V.V., Remnev, G.E., Kuleshov, A.K., and Saltymakov, M.S., Modification of (Ti,Cr)N coatings on a hard alloy under the action of high-power pulsed ion beams, Inorg. Mater.: Appl. Res., 2011, vol. 2, no. 3, pp. 242–246.

    Article  Google Scholar 

  28. Zlobin, V.N., Vasil’ev, I.P., and Zelyakovskii, D.V., Use of ion implantation in engine engineering, Fundam. Issled., 2015, no. 7-4, pp. 707–711.

  29. Zhong, H., Zhang, J., Shen, J., Yu, X., Liang, G., Cui, X., Zhang, X., Zhang, G., Yan, S., and Le, X., Craters forming mechanism of high speed steel irradiated by intense pulsed ion beam, Nucl. Instrum. Methods Phys. Res., Sect. B, 2017, vol. 409, pp. 298–301.

    CAS  Google Scholar 

  30. Kurzina, I.A., Kozlov, E.V., Popova, N.A., Kalashnikov, M.P., Nikonenko, E.L., Savkin, K.P., Oks, E.M., and Sharkeev, Yu.P., Modifying the structural phase state of fine-grained titanium under conditions of ion irradiation, Bull. Russ. Acad. Sci.: Phys., 2012, vol. 76, no. 11, pp. 1238–1245.

    Article  CAS  Google Scholar 

  31. Konnov, A.G., Kukarenko, V.A., Belyi, A.V., and Sharkeev, Yu.P., Ion-modified submicrocrystalline titanium and zirconium alloys for medicine and engineering, Mekh. Mash., Mekh., Mater., 2013, no. 22, pp. 47–53.

  32. Novoselov, A.A. and Bayankin, V.Ya., Segregation as manifestation of long-range effect occurring at ion implantation of rolled CuNi foils, Vestn. Permsk. Univ., Ser.: Fiz., 2013, no. 3, pp. 60–67.

  33. Danelyan, L.S., Korshunov, S.N., Mansurova, A.N., Zatekin, V.V., Kulikauskas, V.S., Borovitskaya, I.V., Paramonova, V.V., and Lyakhovitskyi, M.M., Effect of dose and energy of Ar+ ions on the surface properties of vanadium and its alloys, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2014, vol. 8, no. 2, pp. 216–219.

    Article  CAS  Google Scholar 

  34. Shushkov, A.A., Vorob’ev, V.L., Vakhrushev, A.B., Bykov, P.V., and Bayankin, V.Ya., Mechanical properties of carbon steel ST3 irradiated by argon ions with different ion current densities, Khim. Fiz. Mezoskopiya, 2012, no. 14, pp. 97–105.

  35. Gavrilov, N.V., Mesyats, G.A., Nikulin, S.P., Radkovskii, G.V., Eklind, A., Perry, A.J., and Treglio, J.R., New broad beam gas ion source for industrial application, J. Vac. Sci. Technol., 1996, vol. 14, pp. 1050–1055.

    Article  CAS  Google Scholar 

  36. Miroshkin, V.P., Panova, Ya.I., and Pasynkov, V.V., Dielectric relaxation in polycrystalline ferrites, Phys. Solid State, 1981, vol. 66, pp. 779–782.

    Article  CAS  Google Scholar 

  37. Burenkov, A.F., Komarov, F.F., Kumakhov, M.A., and Temkin, M.M., Prostranstvennye raspredeleniya energii, vydelennoi v kaskade atomnykh stolknovenii v tverdykh telakh (Spatial Distribution of Energy Released in the Cascade of Atomic Collisions in Solids), Moscow: Energoizdat, 1985.

  38. Biersack, J.P. and Haggmark, L.G., A Monte Carlo computer program for the transport of energetic ions in amorphous targets, Nucl. Instrum. Methods, 1980, vol. 174, pp. 257–269.

    Article  CAS  Google Scholar 

  39. Pichugin, V.F., Frangul’yan, T.S., Kul’kov, S.N., et al., Zirconium dioxide electric conductivity and its variation under ion irradiation, Fiz. Khim. Obrab. Mater., 1996, no. 6, pp. 17–22.

  40. Golovin, Yu.I., Vvedenie v nanotekhniku (Introduction into Nanoengineering), Moscow: Mashinostroenie, 2007.

  41. Kolmakov, A.G., Terent’ev, V.F., and Bakirov, M.B., Metody izmereniya tverdosti (Measurements of Solidity), Moscow: Intermet Inzhiniring, 2005.

  42. ISO 14577-4:2016: Metallic Materials, Instrumented Indentation Test for Hardness and Materials Parameters, Part 4: Test Method for Metallic and Non-Metallic Coatings, Geneva: Int. Org. Standart., 2016.

  43. Moshchenok, V.I., Novye metody opredeleniya tverdosti materialov: monografiya (New Methods for Determination of Solidity of Materials: Monograph), Kharkov: Khar’k. Nats. Avtom.-Dorozhn. Univ., 2013.

  44. Oliver, W.C. and Pharr, G.M., Measurement of hardness and elastic modulus by instrumented indention: Advanced in understanding and refinements to metho-dology, J. Mater. Res., 2004, vol. 19, no. 1, pp. 3–20.

    Article  CAS  Google Scholar 

  45. Leyland, A. and Matthews, A., On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimized tribological behavior, Wear, 2000, vols. 1–2, pp. 1–11.

  46. Tereshkov, I.V., Abidzina, V.V., Elkin, I.E., Tereshkov, A.M., Glushchenko, V.V., and Stoye, S., The formation of nanoclusters in metals by the low-energy ion irradiation, Surf. Coat. Technol., 2007, vol. 201, pp. 8552–8556.

    Article  CAS  Google Scholar 

  47. Stepanov, V.A. and Khmelevskaya, V.S., Radiation-induced plastic deformation and the long-range action effect, Tech. Phys., 2011, vol. 56, no. 9, pp. 1272–1276.

    Article  CAS  Google Scholar 

  48. Aparina, N.P., Guseva, M.I., Kolbasov, B.N., Korshunov, S.N., Mansurova, A.N., and Martynenko, Yu.V., Some aspects of the long-range effect, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint., 2007, no. 3, pp. 18–27.

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, project no. 17-19-01082.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Ghyngazov, V. V. Ovchinnikov, N. V. Gushchina or F. F. Makhinko.

Additional information

Translated by E. Petrova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghyngazov, S.A., Kostenko, V., Ovchinnikov, V.V. et al. Surface Modification of Corundum Ceramics by Argon Ion Beam. Inorg. Mater. Appl. Res. 10, 438–444 (2019). https://doi.org/10.1134/S2075113319020199

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113319020199

Keywords:

Navigation