Skip to main content
Log in

Modulation of morphology and optical characteristics of TiO2 grown into porous silicon by an easy approach

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, a straightforward solvothermal approach to growing titanium dioxide (TiO2) structures into porous silicon substrates was developed. It was possible to modulate the morphology and optical characteristics of TiO2 by varying the concentration of the precursor and the kind of solvent. It was determined that these parameters strongly influence the morphology, photoluminescent response, bandgap, and structural characteristics of TiO2. The morphology of the TiO2 particles deposited on the walls of porous Si can be modulated from elongated particles to nanoflakes by increasing the precursor concentration. On the other hand, their morphology is flake-like, semi-spherical, and sea urchin-like, for methanol, ethylene glycol, and acetone, respectively. The particle size also varies with the precursor concentration; the size is smaller for lower concentrations, producing that the bandgap and emission energy increase. The variety of TiO2 structures presented in this work, with different properties, can find potential applications in photocatalysis, solar cells, and sensing devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.M. Mokhtar, M.K. Ahmad, C.F. Soon, N. Nafarizal, A.B. Faridah, A.B. Suriani, M.H. Mamat, M. Shimomura, K. Murakami, Optik 154, 510 (2018)

    CAS  Google Scholar 

  2. I.B. Troitskaia, T.A. Gavrilova, V.V. Atuchin, Phys. Procedia 23, 65 (2012)

    CAS  Google Scholar 

  3. M. Abdullaha, S.K. Kamarudina, Renew. Sustain. Energy Rev. 76, 212 (2017)

    Google Scholar 

  4. S. Sampath, P. Maydannik, T. Ivanova, M. Shestakova, T. Homola, A. Bryukvin, M. Sillanpää, R. Nagumothu, V. Alagan, Superlattices Microstruct. 97, 155 (2016)

    CAS  Google Scholar 

  5. C.M. Tank, Y.S. Sakhare, N.S. Kanhe, A.B. Nawale, A.K. Das, S.V. Bhoraskar, V.L. Mathe, Solid State Sci. 13, 1500 (2011)

    CAS  Google Scholar 

  6. J. Castañeda-Contreras, V.F. Marañón-Ruiz, R. Chiu-Zárate, H. Pérez-Ladrón de Guevara, R. Rodriguez, C. Michel-Uribe, Mater. Res. Bull. 47, 290 (2012)

    Google Scholar 

  7. Y.S. Sakhare, S.V. Bhoraskar, V.L. Mathe, A.U. Ubale, Mater. Res. Bull. 59, 205 (2014)

    CAS  Google Scholar 

  8. J. Xiong, B. Yang, J. Yuan, L. Fan, X. Hu, H. Xie, L. Lyu, R. Cui, Y. Zou, C. Zhou, D. Niu, Y. Gao, J. Yang, Org. Electron. 17, 253 (2015)

    CAS  Google Scholar 

  9. D. Rafieian, W. Ogieglo, T. Savenije, R.G.H. Lammertink, AIP Adv. 5, 97168 (2015)

    Google Scholar 

  10. C.W. Lai, S. Sreekantan, J. Eng. Sci. 8, 39 (2012)

    Google Scholar 

  11. X.M. Yan, J. Kang, L. Gao, L. Xiong, P. Mei, Appl. Surf. Sci. 15, 778 (2013)

    Google Scholar 

  12. J.M. Wu, T.W. Zhang, Y.W. Zeng, S. Hayakawa, K. Tsuru, A. Osaka, Langmuir 21, 6995 (2005)

    CAS  Google Scholar 

  13. Z.Y. Yuan, B.L. Su, Colloids Surf. A 241, 173 (2004)

    CAS  Google Scholar 

  14. M. Malekshahi Byranvand, A. Nemati Kharat, L. Fatholahi, Z. Malekshahi Beiranvand, J. Nanostruct. 3, 1 (2013)

    Google Scholar 

  15. I. Oja, A. Mere, M. Krunks, C.-H. Solterbeck, M. Es-Souni 99–100, 259 (2004)

    Google Scholar 

  16. Xu Shiping, Xiang Sun, Yuan Gao, Min Yue, Qinyan Yue, Baoyu Gao, J. Solid State Chem. 253, 167 (2017)

    Google Scholar 

  17. A. Uhlir, Bell Techn. J. 35, 333 (1956)

    CAS  Google Scholar 

  18. L.T. Canham, Appl. Phys. 57, 1046 (1990)

    CAS  Google Scholar 

  19. Haythem Gammoudi, Fatma Belkhiria, Kamel Sahlaoui, Walid Zaghdoudi, Mahmoud Daoudi, Saloua Helali, Fabien Morote, Hassan Saadaoui, Mosbah Amlouk, Gediminas Jonusauskas, Touria Cohen-Bouhacina, Radhouane Chtouro, J. Alloy. Compd. 731, 978 (2018)

    CAS  Google Scholar 

  20. P. Dwivedi, N. Chauhan, P. Vivekanandan, S. Das, D. Sakthi Kumar, S. Dhanekar, Sens. Actuators B 249, 602 (2017)

    CAS  Google Scholar 

  21. Y. Wang, Y.R. Su, L. Qiao, L.X. Liu, Q. Su, C.Q. Zhu, X.Q. Liu, Nanotechnology 22, 225702 (2011)

    CAS  Google Scholar 

  22. E. Quiroga-González, M.Á. Juárez-Estrada, E. Gómez-Barojas, ECS Trans. 86, 55 (2018)

    Google Scholar 

  23. R. Fernández-Acosta, E. Peláez-Abellán, J.R. Correa, U. Jáuregui-Haza, Int. J. Chem. Mater. Environ. Res. 3, 20 (2016)

    Google Scholar 

  24. W.F. Zhang, Y.L. He, M.S. Zhang, Z. Yin, Q. Chen, J. Phys. D 33, 912 (2000)

    CAS  Google Scholar 

  25. P.M. Perillo, D.F. Rodriguez, Nanosci. Methods 1, 194 (2012)

    Google Scholar 

  26. M.K. Ahmad, S.M. Mokhtar, C.F. Soon, N. Nafarizal, A.B. Suriani, A. Mohamed, M.H. Mamat, M.F. Malek, M. Shimomura, K. Murakami, J. Mater. Sci. 27, 7920 (2016)

    CAS  Google Scholar 

  27. M. Najafi, A. Kermanpur, M.R. Rahimipour, A. Najafizadeh, J. Alloy. Compd. 722, 272 (2017)

    CAS  Google Scholar 

  28. M. Lubas, J.J. Jasinski, M. Sitarz, L. Kurpaska, P. Podsiad, J. Jasinski, Spectrochim. Acta Part A 133, 867 (2014)

    CAS  Google Scholar 

  29. K. Zakrzewska, Adv. Sci. Eng. Mater. (2011). https://doi.org/10.1155/2012/826873

    Article  Google Scholar 

  30. D.H. Everett, Pure Appl. Chem. 31, 577–638 (1972)

    Google Scholar 

  31. Y. Tonga, Q. Huanga, S. Ana, Q. Rena, L. Zhanga, Y. Dinga, X. Lub, Y. Zhaoa, X. Zhanga, Sol. Energy 173, 504 (2018)

    Google Scholar 

  32. W.-J. Lee, Y.-H. Choa, Thin Solid Films 657, 32 (2018)

    CAS  Google Scholar 

  33. I. Leontis, A. Othonos, A.G. Nassiopoulou, Nanoscale Res. Lett. 8, 383 (2013)

    Google Scholar 

  34. Canham, Leigh & Knovel (Firm), London, 1997

  35. Nassiopoulou A. G, Encyclopedia of Nanoscience and Nanotechnology, Silicon nanocrystals and nanowires embedded in SiO2, ed. By Nalwa H. S. (California: American Scientific Publishers, 2004)

  36. H. Mizuno, H. Koyama, N. Koshida, Appl. Phys. Lett. 8, 3779 (1996)

    Google Scholar 

  37. M. Wolkin, J. Jorne, P. Fauchet, G. Allan, C. Delerue, Phys. Rev. Lett. 8, 197 (1999)

    Google Scholar 

  38. E. Lioudakis, A. Othonos, A.G. Nassiopoulou, Appl. Phys. Lett. 8, 171103 (2007)

    Google Scholar 

  39. L.T. Cong, N.T. Ngoc Lam, N.T. Giang, P.T. Kien, N.D. Dung, N.N. Ha, Mater. Sci. Semicond. Process. 90, 198 (2019)

    CAS  Google Scholar 

  40. F. Labreche, A. Berbadj, N. Brihi, R. Karima, B. Jamoussi, Optik 172, 63 (2018)

    CAS  Google Scholar 

  41. T.T. Loan, V.H. Huong, V.T. Tham, N.N. Long, Phys. B 532, 210 (2018)

    CAS  Google Scholar 

  42. G. Santamaría-Juárez, E. Gómez-Barojas, E. Quiroga-González, E. Sánchez-Mora, J.A. Luna-López, Mesoporous Biomater 3, 61 (2016)

    Google Scholar 

  43. B. Choudhury, M. Dey, A. Choudhury, Nano Lett. 3, 25 (2013)

    Google Scholar 

  44. A. Kux, M. Ben Chorin, Phys. Rev. B 51, 17535 (1995)

    CAS  Google Scholar 

  45. M.B. Sarkar, A. Mondal, B. Choudhuri, B.K. Mahajan, S. Chakrabartty, C. Ngangbam, J. Alloys Compd. 615, 440–445 (2014)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CONACYT for its economic support through the Scholarship Number 568124.

Author information

Authors and Affiliations

Authors

Contributions

AGR carried out the experimental setup and the characterization and wrote the manuscript. CZI and EQG provided the idea and supervised the study. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to C. Zúñiga-Islas or E. Quiroga-González.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garzon-Roman, A., Zúñiga-Islas, C. & Quiroga-González, E. Modulation of morphology and optical characteristics of TiO2 grown into porous silicon by an easy approach. J Mater Sci: Mater Electron 30, 21503–21513 (2019). https://doi.org/10.1007/s10854-019-02540-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02540-1

Navigation