Skip to main content
Log in

Advances in gas ionization sensors based on nanostructured materials: a review

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this review article collection of summary of research works related to gas ionization sensors based on nanostructured materials is attempted. Among physical gas sensors, gas ionization sensor is used to identify gases based on breakdown of ionized gases as each gas has a unique breakdown voltage. The sensor is generally, made of two parallel electrodes separated by a narrow gap. Nanostructures, usually metallic or semiconducting, in from of nanowires/nanorods are places between the two plates. These structures act as electric field amplifiers to enhance the electric field intensity to reduce the breakdown voltages of the gases. Numerous investigations revealed that type of materials and their physical properties play important roles in the sensor characteristics and their operations. Identifying materials to optimize the strength of electric field and generate large field enhancement is a crucial step towards this application. Carbon nanotubes were among the first candidates to utilize in these structures and in fact, they were used to prove the principle of the device. The very first developed sensor showed that using carbon nanotubes between the two parallel plates of the sensor reduces the required applied voltages to ionize gases up to one order of magnitude. Since 2003 many studies are done to improve the performance and physical properties like sensitivity, selectivity, durability and stability of the device by incorporating various materials in form of nanowires/nanorods inside the device structure. In this work, first the fundamental structure of gas ionization sensor and the theory of their operations like field emission, field ionization and quantum tunneling phenomena are presented. Then, related research works reported in the literature are summarized. This review article is partitioned based on the materials used in the structure of the device as they play the most effective role in their performances. It is started with studies on devices based on carbon nanotubes, and then those used metallic nanowires followed by works done using semiconductor nanostructure to develop the device. The review started from the oldest articles in each category carried on to the most recent published works. All essential parameters effecting the structures and operations of the reported devices including their pros and cons are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

(Adapted from Modi et al. [40]) a Steady breakdown voltage observed for various gases with concentration in the range of 10−5 to 10−1 mol/L. The minimum breakdown voltage is allocated to helium at around 164 V and the maximum for ammonia is about 430 V. b variation of discharge current versus the concentration of the gas confirms that the device could also be used as the pressure sensor

Fig. 7

(Adapted from [41])

Fig. 8

(Adapted from [34])

Fig. 9
Fig. 10
Fig. 11

(Adapted from [34])

Fig. 12

(Adapted from [32])

Similar content being viewed by others

References

  1. Z. Yunusa, M. Nizar Hamidon, M. Nizar Hamidon, A. Kaiser, Z. Awang, Z. Awang, Sens. Trans. 168, 61 (2014)

    Google Scholar 

  2. R. Tu, Quantum Mechanics’ Return to Local Realism, (Cambridge Scholars Publishing, 2018)

  3. G. Korotcenkov, Handbook of Gas Sensor Materials, vol. I (Springer, Berlin, 2014)

    Book  Google Scholar 

  4. F. Sauli, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip 386, 2–31(1997)

  5. D.B. Go, Ionization and Ion Transport, A Primer for the Study of Non-Equilibrium, Low-Temperature Gas Discharges and Plasmas (Morgan & Claypool Publishers, San Rafael, 2018)

    Book  Google Scholar 

  6. A.M. Howaston, An Introduction To Gas Discharges, 2nd edn. (Pergamon Press, Oxford, 1976)

    Google Scholar 

  7. D. Xiao, Gas Discharge and Gas Insulation (Springer, Heidelberg, 2016)

    Book  Google Scholar 

  8. G.F. Knoll, Radiation Detection and Measurments, 3rd edn. (Wiley, New Jersey, 1999)

    Google Scholar 

  9. J.S. Townsend, Electricity in Gases (Oxford University Press, New York, 1915)

    Book  Google Scholar 

  10. M.M. Pejovic, G.S. Ristic, J.P. Karamarkovic, J. Phys. D 35, 10 (2002)

    Article  Google Scholar 

  11. V. Lisovskiy, V. Koval, V. Yegorenkov, Phys. Lett. A 375, 19 (2011)

    Article  CAS  Google Scholar 

  12. K.T. Burm, Contrib. Plasma Phys. 47, 3 (2007)

    Article  Google Scholar 

  13. L.P. Babich, T.V. Loˇ, IEEE Trans. Plasma Sci. 44, 12 (2016)

    Article  Google Scholar 

  14. A. Peschot, N. Bonifaci, O. Lesaint, C. Valadares, C. Poulain, Appl. Phys. Lett. 105(12), 123109 (2014)

    Article  CAS  Google Scholar 

  15. V.A. Lisovskii, S.D. Yakovin, Tech. Phys. 45(6), 727 (2000)

    Article  CAS  Google Scholar 

  16. W.S. Boyle, P. Kisliuk, Phys. Rev. 97, 2 (1955)

    Article  Google Scholar 

  17. G.T. Boyd, T. Rasing, J.R.R. Leite, Y.R. Shen, Phys. Rev. B 30, 2 (1984)

    Article  Google Scholar 

  18. H.C. Miller, J. Appl. Phys. 38, 11 (1967)

    Article  Google Scholar 

  19. R.G. Forbes, C.J. Edgcombe, U. Valdrè, Ultramicroscopy 95, 57 (2003)

    Article  CAS  Google Scholar 

  20. N. Chivu, M. Kahrizi, IEEE Int. Conf. Ind. Technol. (2012). https://doi.org/10.1109/ICIT.2012.6209934

    Article  Google Scholar 

  21. P. Abedini Sohi, M. Kahrizi, Nanostructures, (IntechOpen, 2019), pp. 1–16

  22. F.A. Padovani, R. Stratton, Solid State Electron. 9, 7 (1966)

    Article  Google Scholar 

  23. E.L. Murphy, R.H. Good, Phys. Rev. 102, 6 (1956)

    Article  Google Scholar 

  24. W. P. Dyke, W. W. Dolan, Adv. Electron. Electron Phys, 8 (1956)

  25. A. Knapek, “Methods of preparation and characterisation of experimental Field-Emission,” BRNO university of technology, 2016

  26. J.W. Gadzuk, E.W. Plummer, Rev. Mod. Phys. 45, 3 (1973)

    Article  Google Scholar 

  27. R.H. Fowler, L. Nordheim, R. Soc. 119, 781 (1928)

    Google Scholar 

  28. J.T.W. Yeow, Y. Wang, J. Sens. (2009). https://doi.org/10.1155/2009/493904

    Article  Google Scholar 

  29. D. L. Yang, L. Hyeon-Jae, C. Woo-Sung, Y. Lee, J.K Kim, S. Nahm, B.Ju, IVNC IFES 2006 - Tech. Dig. - l9th Int. Vac. Nanoelectron. Conf. 50th Int. F. Emiss. Symp., 433 (2006)

  30. Y. Saito, S. Uemura, Carbon N. Y. 38, 2 (2000)

    Article  Google Scholar 

  31. R.B. Sadeghian, M. Kahrizi, Sens. Actuators, A 137, 2 (2007)

    Article  CAS  Google Scholar 

  32. N. Azmoodeh, N. Chivu, R. B. Sadeghian, M. Kahrizi, Sensors, EUROCON, 1, (2009)

  33. H. Karaagac, M.S. Islam, Adv. Funct. Mater. 24, 15 (2014)

    Article  CAS  Google Scholar 

  34. R.B. Sadeghian, M.S. Islam, Nat. Mater. 10, 252 (2011)

    Article  CAS  Google Scholar 

  35. P. A. Sohi, “Self-Standing Silicon Nanostructures Fabricated Using Chemical/Electrochemical Technique: Application in Gas Field Ionization Tunneling Sensor,” Concordia University, 2019

  36. S. Iijima, Lett. Nat. 354, 56 (1991)

    Article  CAS  Google Scholar 

  37. I.V. Zaporotskova, N.P. Boroznina, Y.N. Parkhomenko, L.V. Kozhitov, Mod. Electron. Mater. 2, 4 (2017)

    Google Scholar 

  38. J. Chung, K. Lee, J. Lee, Nanotechnology 15, 11 (2004)

    Article  CAS  Google Scholar 

  39. W. Wongwiriyapan, S. Honda, H. Konishi, T. Mizuta, T. Ikuno, T. Ito, T. Maekawa, K. Suzuki, H. Ishikawa, K. Oura, M. Katayama, Jpn. J. Appl. Phys. 44, 16–19 (2005)

    Google Scholar 

  40. A. Modi, N. Koratkar, E. Lass, B. Wei, P.M. Ajayan, Nature 424, 171 (2003)

    Article  CAS  Google Scholar 

  41. B. Yan, K. Qian, Y. Zhang, D. Xu, Phys. E 28, 1 (2005)

    Article  CAS  Google Scholar 

  42. M.J. Madou, Fundamentals of Microfacrication and Nanotechnology, Manufacturing Techniques, vol. 3 (CRC Press, New York, 2012)

    Google Scholar 

  43. G. Hui, L. Wu, M. Pan, Y. Chen, T. Li, X. Zhang, Meas. Sci. Technol. 17, 10 (2006)

    Article  CAS  Google Scholar 

  44. S. Jeong, O. Lee, K. Lee, S.H. Oh, C.G. Park, Chem. Mater. 14(4), 1859 (2002)

    Article  CAS  Google Scholar 

  45. Z. Hou et al., A MEMS-based ionization gas sensor using carbon nanotubes. IEEE Trans. Electron Devices 54(6), 1545–1548 (2007)

    Article  CAS  Google Scholar 

  46. Z. Hou, J. Wu, W. Zhou, X. Wei, D. Xu, Y. Zhang, B. Cai, IEEE Trans. Electron Devices 127, 6 (2007)

    Google Scholar 

  47. I.-M. Choi, S. Woo, Appl. Phys. Lett. 87, 7 (2005)

    Google Scholar 

  48. J. Wu, H. Liu, Y. Wang, D. Xu, Y. Zhang, IEEE Int. Conf. on Nano/Micro Engineered and Molecular Systems (2008)

  49. A. Nikfarjam, A. Iraji, F. Razi, S.Z. Mortazavi, Sens. Actuators A Phys. 162, 1 (2010)

    Article  CAS  Google Scholar 

  50. M.S.M. Saheed, N. Muti Mohamed, Z.A. Burhanudin, Appl. Phys. Lett. 104(12), 123105 (2014)

    Article  CAS  Google Scholar 

  51. D.W.H. Fam, A. Palaniappan, A.I.Y. Tok, B. Liedberg, S.M. Moochhala, Sens. Actuators B. Chem. 157, 1 (2011)

    Article  CAS  Google Scholar 

  52. R. Rao et al., ACS Nano 12, 12 (2018)

    Article  CAS  Google Scholar 

  53. Q. Zou, M.Z. Wang, Y.G. Li, L.H. Zou, J. Exp. Nanosci. 6, 3 (2011)

    Article  CAS  Google Scholar 

  54. C. Andersson, H. Grennberg, Eur. J. Org. Chem. 26, 4421 (2009)

    Article  CAS  Google Scholar 

  55. C. Chang, C. Huang, Y. Li, H. Cheng, Sens. Actuators, A 203, 1 (2013)

    Article  CAS  Google Scholar 

  56. M. Baghgar, Y. Abdi, E. Arzi, J. Phys. D 42, 135502 (2009)

    Article  CAS  Google Scholar 

  57. S.J. Kim, J. Phys. D Appl. Phys. 39, 14 (2006)

    Article  CAS  Google Scholar 

  58. Z. Yong, L. Junhua, L. Xin, T. Xiaojun, Z. Changchun, Sens. Actuators, A 125, 1 (2005)

    Article  CAS  Google Scholar 

  59. A. Wolfsteller, N. Geyer, T. Nguyen-Duc, P.D. Kanungo, N.D. Zakharov, M. Reiche, W. Erfurth, H. Blumtritt, S. Kalem, P. Werner, U. Gösele, Thin Solid Films 518(9), 2555 (2010)

    Article  CAS  Google Scholar 

  60. Z. Huang, N. Geyer, P. Werner, J. De Boor, U. Gösele, Adv. Mater. 23, 2 (2011)

    Article  Google Scholar 

  61. C. Chartier, S. Bastide, C. Lévy-Clément, Electrochim. Acta 53, 17 (2008)

    Article  CAS  Google Scholar 

  62. A. Fasoli, W.I. Milne, Mater. Sci. Semicond. Process. 15, 6 (2012)

    Article  CAS  Google Scholar 

  63. M.J. Madou, Fundamentals of Microfabrication and Nanotechology, Solid-State Physics, Fluidics and Analytical Techniques in Micro and Nanotechnology, 3rd edn. (CRC Press, New york, 2012)

    Google Scholar 

  64. P. Abedini Sohi, M. Kahrizi, IEEE Sens. J. 18, 15 (2018)

    Article  Google Scholar 

  65. P.A. Sohi, M. Kahrizi, IEEE Trans. Nanotechnol. 16, 3 (2017)

    Article  Google Scholar 

  66. P. Abedini Sohi, M. Kahrizi, IEEE Canadian Conference on Electrical & Computer Engineering (CCECE) (2018). https://ieeexplore.ieee.org/abstract/document/8447621

  67. B.L. Vayssieres, Adv. Mater. 15, 5 (2003)

    Article  Google Scholar 

  68. H. Zhang, X. Ma, J. Xu, J. Niu, D. Yang, Nanotechnology 14, 4 (2003)

    Article  Google Scholar 

  69. J. Elias, C. Le, Electroanal. Chem. 621, 2 (2008)

    Article  CAS  Google Scholar 

  70. D. Dimova-malnovska, P. Andreev, M. Sendova-vassileva, H. Nichev, K. Starbova, Energy procedia 2, 1 (2010)

    Article  CAS  Google Scholar 

  71. J. Wang, M. Tian, N. Kumar, T.E. Mallouk, U.V. Park, V. Pennsyl, Nano Lett. 5, 7 (2005)

    Google Scholar 

  72. W. Lee, M. Jeong, J. Myoung, Nanotechnology 15, 2 (2004)

    Google Scholar 

  73. X. Liu, X. Wu, H. Cao, R.P. Chang, J. Appl. Phys. 95, 6 (2004)

    Google Scholar 

  74. Z.W. Pan, S.M. Mahurin, S. Dai, D.H. Lowndes, Nano Lett. 5, 4 (2005)

    Google Scholar 

  75. H. Fan, B. Fuhrmann, R. Scholz, F. Syrowatka, A. Dadgar, A. Krost, M. Zacharias, J. Cryst. Growth 287, 1 (2006)

    Article  CAS  Google Scholar 

  76. L. Liao, H.B. Lu, M. Shuai, J.C. Li, Y.L. Liu, C. Liu, Z. Shen, T. Yu, Nanotechnology 19, 17 (2008)

    Google Scholar 

  77. C. Li, G. Fang, N. Liu, J. Li, L. Liao, F. Su, G. Li, X. Wo, X. Zhao, J. Phys. Chem. C 111, 34 (2007)

    Google Scholar 

  78. S. Spitsina, M. Kahrizi, IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society (2012). https://ieeexplore.ieee.org/document/6389251

  79. S. Spitsina, M. Kahrizi, Sens. Mater. 28, 1 (2016)

    Google Scholar 

  80. T. Yamamoto, Thin Solid Films 421, 2 (2002)

    Google Scholar 

  81. S. Dhara, P.K. Giri, Thin Solid Films 520, 15 (2012)

    Article  CAS  Google Scholar 

  82. W. Li, C. Kong, G. Qin, H. Ruan, L. Fang, J. Alloys Compd. 609, 5 (2014)

    Google Scholar 

  83. M. Lu, M. Lu, L. Chen, Nano Energy 1, 2 (2012)

    Article  CAS  Google Scholar 

  84. R.B. Sadeghian, N. Chivu, M. Kahrizi, Sens. Mater. 21, 1 (2009)

    Google Scholar 

  85. R. B. Sadeghian, M. Kahrizi, SENSORS, IEEE (2007). https://ieeexplore.ieee.org/document/4388482

  86. R. B. Sadeghian, M. Kahrizi, In 2007 IEEE International Symposium on Industrial Electronics (2007). https://ieeexplore.ieee.org/document/4388482

  87. J.C. Hulteen, C.R. Martin, J. Mater. Chem. 1, 7 (1997)

    Google Scholar 

  88. P. Forrer, F. Schlottig, H. Siegenthaler, M. Tetor, J. Appl. Electrochem. 30, 5 (2000)

    Article  Google Scholar 

  89. R.B. Sadeghian, M. Kahrizi, IEEE Sens. J. 8(2), 161 (2008)

    Article  CAS  Google Scholar 

  90. R. Banan-sadeghian, S. Member, S. Badilescu, Y. Djaoued, S. Balaji, IEEE Electron Devices Lett. 29, 4 (2008)

    Article  CAS  Google Scholar 

  91. P. Goring, E. Pippel, H. Hofmeister, R.B. Wehrspohn, M. Steinhart, U. Go, Nano Lett. 4, 6 (2004)

    Article  CAS  Google Scholar 

  92. N. Chivu, M. Kahrizi, Sens. Transducers 153, 6 (2013)

    Google Scholar 

  93. N. Chivu, M. Kahrizi, IEEE International Conference on Industrial Technology (2012). https://ieeexplore.ieee.org/document/6209934

  94. V. Vahedi, M. Surendra, Comput. Phys. Commun. 87, 1–2 (1995)

    Article  Google Scholar 

  95. C.K. Birdsall, L. Fellow, IEEE Trans. Plasma Sci. 19, 2 (1991)

    Article  Google Scholar 

  96. V. Serikov, K. Nanbu, IEEE Trans. Plasma Sci. 27, 1 (1999)

    Article  Google Scholar 

  97. D. Rapp, P. Golden, J. Chem. Phys. 43, 5 (2004)

    Google Scholar 

  98. L.G. Christophorou, J.K. Olthoff, Int. J. Mass Spectrom. 205, 1–3 (2001)

    Article  Google Scholar 

  99. P. Rawat, V.S. Prabhudesai, M.A. Rahman, N.B. Ram, E. Krishnakumar, Int. J. Hydrog. Energy 277, 1–3 (2008)

    Google Scholar 

  100. M.S. Wang, L. Peng, J.Y. Wang, Q. Chen, J. Phys. Chem. B 109, 1 (2005)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and by the Gina Cody school of Engineering and Computer Science at Concordia University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parsoua A. Sohi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohi, P.A., Kahrizi, M. Advances in gas ionization sensors based on nanostructured materials: a review. J Mater Sci: Mater Electron 30, 19087–19099 (2019). https://doi.org/10.1007/s10854-019-02331-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02331-8

Navigation