Skip to main content
Log in

Study on the nature of distribution of gold nanoparticles inside the 30Bi2O3:70B2O3 glass and its impact on optical behaviour

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Present study report the influence of distribution of gold nanoparticles on optical properties of bismuth-borate glass. The glass with the composition 30Bi2O3:70B2O3 was first melted and in this glass matrix, 3 × 1011 number of gold nanoparticles of 10 nm size were incorporated within the glass matrix using three different methods: drop casting method, sandwich method and melt quenching at room temperature. In the very first method, after pouring the liquid glass sample, drops of gold nanoparticles were poured on the top of the melt and placed for annealing. While in sandwich method pouring of first half of the sample followed by pouring of nanoparticles were carried out and then remaining molten glass was poured on it. For melt quenching method, the appropriate weight of chemicals along with gold nanoparticles were mixed and melt was poured at room temperature. These three different methods were adopted to get functional properties in glasses for achieving better optical and electronic properties. The prepared glass matrices were analysed using X-ray diffraction spectroscopy (XRD), field emission scanning electron microscopy (FESEM), Differential thermal analysis (DTA), UV–Vis–NIR spectroscopy, Fourier transform infrared spectroscopy (FTIR) and Tera-hertz time domain spectroscopy (TDS). XRD confirm the invariability of amorphous nature while FESEM images shows a large variation in the morphology and size of gold nanoparticles inside the glass matrix. The results show that morphology of gold nanoparticles inside the glass is highly dependent on the method adopted for preparation of glass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Zeng, G. Chen, J. Qiu, X. Jiang, C. Zhu 354, 1155 (2008)

    Google Scholar 

  2. E. Culea, I. Vida-simiti, G. Borodi, E. Nicolae, R. Stefan, P. Pascuta, Ceram. Int. 40, 11001 (2014)

    Article  Google Scholar 

  3. A.L. Stepanov, Silver Nanopar. 93 (2010)

  4. D. Manzani, J.M.P. Almeida, M. Napoli, L. De Boni, M. Nalin, C.R.M. Afonso, S.J.L. Ribeiro, C.R. Mendonça, Plasmonics 8, 1667 (2013)

    Article  Google Scholar 

  5. S. Singla, V. Gopal, N. Mahendru, S.S. Prabhu, M. Falconieri, G. Sharma, Opt. Mater. 72, 91 (2017)

    Article  Google Scholar 

  6. J.M.P. Almeida, L. De Boni, W. Avansi, C. Ribeiro, E. Longo, A.C. Hernandes, C.R. Mendonca, Opt. Express 20, 15106 (2012)

    Article  Google Scholar 

  7. A. Simo, J. Polte, N. Pfander, U. Vainio, F. Emmerling, K. Rademann, J. Am. Chem. Soc. 134, 18824 (2012)

    Article  Google Scholar 

  8. J. Rozra, I. Saini, S. Aggarwal, A. Sharma, Adv. Mater. Lett. 4, 598 (2013)

    Article  Google Scholar 

  9. R. Camerini, C. Jacinto, Opt. Mater. (Amst). 52, 230 (2016)

    Article  Google Scholar 

  10. Y. Huang, W. Xiang, S. Lin, R. Cao, Y. Zhang, J. Zhong, X. Liang, J. Non. Cryst. Solids 459, 142 (2017)

    Article  Google Scholar 

  11. A. Awang, S.K. Ghoshal, M.R. Sahar, R. Arifin, F. Nawaz, J. Lumin. 149, 138 (2014)

    Article  Google Scholar 

  12. S.K. Ghoshal, A. Awang, M.R. Sahar, A. Ari, J. Lumin. 159, 265 (2015)

    Article  Google Scholar 

  13. H. Kim, D. Zhou, R. Wang, Q. Jiao, Z. Yang, Z. Song, Ceram. Int. 41, 2648 (2015)

    Article  Google Scholar 

  14. Ph. Buffat, J.P. Borel, Phys. Rev. A 13, 6 (1976)

    Article  Google Scholar 

  15. T.S. Bi, E.M. Levin, C. Mcdanlel, J. Am. Ceram. Soc. 45, 355 (1962)

    Article  Google Scholar 

  16. E. Nicolae, P. Pascuta, M. Pustan, D.R. Tamas-gavrea, L. Pop, I. Vida-simiti, J. Non. Cryst. Solids 408, 18 (2015)

    Article  Google Scholar 

  17. S. Rolland, M. Tribet, P. Jollivet, C. Jégou, V. Broudic, C. Marques, H. Ooms, P. Toulhoat, J. Nucl. Mater. 433, 382 (2013)

    Article  Google Scholar 

  18. H. Doweidar, Y.B. Saddeek, J. Non. Cryst. Solids 355, 348 (2009)

    Article  Google Scholar 

  19. Y.B. Saddeek, M.S. Gaafar, Mater. Chem. Phys. 115(1), 280 (2009)

    Article  Google Scholar 

  20. S. Baccaro, G. Monika, K.S. Sharma, D. Thind, A.Cecillia Singh, Nucl. Instrum. Methods Phys. Res. Sect. B 260, 613 (2007)

    Article  Google Scholar 

  21. Manupriya, K.S. Thind, G. Sharma, V. Rajendran, K. Singh, A.V.G. Devi, S. Aravindan, Phys. Status Solidi Appl. Mater. Sci. 203, 2356 (2006)

    Article  Google Scholar 

  22. D. Saritha, Y. Markandeya, M. Salagram, M. Vithal, A.K. Singh, G. Bhikshamaiah, J. Non. Cryst. Solids 354, 5573 (2008)

    Article  Google Scholar 

  23. A.V. Egorysheva, V.D. Volodin, V.M. Skorikov, Inorg. Mater. 44, 1261 (2015)

    Article  Google Scholar 

  24. N.N. Ahlawat, P. Agamkar, N. Ahlawat, A. Agarwal, Monica, Rekha, Adv. Mater. Lett. 4, 71 (2013)

    Article  Google Scholar 

  25. G. Senthil Murugan, J. Non. Cryst. Solids 279, 1 (2001)

    Article  Google Scholar 

  26. M. Peng, C. Zollfrank, L. Wondraczek, J. Phys. Condens. Mat. 21, 285106 (2009)

    Article  Google Scholar 

  27. L. Duvillaret, F. Garet, J.-L.L. Coutaz, IEEE J. Sel. Top. Quantum Electron. 2, 739 (1996)

    Article  Google Scholar 

  28. W. Withayachumnankul, B.M. Fischer, H. Lin, D. Abbott, J. Opt. Soc. Am. B 25, 1059 (2008)

    Article  Google Scholar 

  29. O. Sushko, K. Shala, R. Dubrovka, R. Donnan, J. Opt. Soc. Am. A 30, 979 (2013)

    Article  Google Scholar 

  30. L. Duvillaret, F. Garet, J.-L. Coutaz, J. Opt. Soc. Am. B 17, 452 (2000)

    Article  Google Scholar 

  31. M. Naftaly, R.E. Miles, J. Non. Cryst. Solids 351, 3341 (2005)

    Article  Google Scholar 

Download references

Acknowledgement

This work was financially supported by Department of Science and Technology (SB/S2/LOP-019/2013). Authors thank Mr. Rudheer Bapat for the FESEM images, N. Kulkarni for the XRD and Goutam Rana for THz Time Domain spectroscopic measurements and expert advice in the analysis. Authors are also greatful to Dr. Venu Gopal Achanta for the constant support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopi Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singla, S., Prabhu, S.S., Pandey, O.P. et al. Study on the nature of distribution of gold nanoparticles inside the 30Bi2O3:70B2O3 glass and its impact on optical behaviour. J Mater Sci: Mater Electron 30, 13939–13947 (2019). https://doi.org/10.1007/s10854-019-01738-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01738-7

Navigation