Skip to main content

Advertisement

Log in

Metallic glass properties, processing method and development perspective: a review

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This review paper aims to outline the development of Metallic Glass and its progress to functionally graded material. The review begins with the fundamental theory of producing the Metallic Glass and the challenges. Namely, the concept of glass-forming ability, alloy system of Metallic Glass, supercooling process, the mechanical and thermal characteristics. The authors presented the Metallic Glass processing method as pre and post-processing for further description. The different alloy systems of Metallic Glass produced by researchers created properties suitable for various industrial applications. Consequently, the authors point a focus on the Functionally Graded Material (FGM) of the Metallic Glass (MG) areas where further research needs to be researched. In distinction, the Functionally Graded Material Metallic Glass novelty is to combine the crystalline and amorphous structure state in one product. Preliminary researches selected by the authors convince the promising aspect of the Functionally Graded Material Metallic Glass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Klement W, Willens RH, Duwez POL (1960) Non-crystalline structure in solidified gold–silicon alloys. Nature 187(4740):869–870. https://doi.org/10.1038/187869b0

    Article  Google Scholar 

  2. Ruhl RC (1967) Cooling rates in splat cooling. Mater Sci Eng 1(6):313–320. https://doi.org/10.1016/0025-5416(67)90013-4

    Article  Google Scholar 

  3. Chen HS, Turnbull D (1969) Formation, stability and structure of palladium-silicon based alloy glasses. Acta Metall 17(8):1021–1031. https://doi.org/10.1016/0001-6160(69)90048-0

    Article  Google Scholar 

  4. Inoue A, Wang XM, Zhang W (2008) Developments and applications of bulk metallic glasses. Rev Adv Mater Sci 18(1):1–9

    Google Scholar 

  5. Inoue A, Takeuchi A (2011) Recent development and application products of bulk glassy alloys☆. Acta Mater 59(6):2243–2267. https://doi.org/10.1016/j.actamat.2010.11.027

    Article  Google Scholar 

  6. Yue XX, Liu CT, Pan SY, Inoue A, Liaw PK, Fan C (2018) Effect of cooling rate on structures and mechanical behavior of Cu50Zr50 metallic glass: a molecular-dynamics study. Phys B Condens Matter 547:48–54. https://doi.org/10.1016/j.physb.2018.07.030

    Article  Google Scholar 

  7. Liu L, Zhang T, Liu Z, Yu C, Dong X, He L, Gao K, Zhu X, Li W, Wang C, Li P, Zhang L, Li L (2018) Near-net forming complex shaped Zr-based bulk metallic glasses by high pressure die casting. Materials (Basel) 11(11). https://doi.org/10.3390/ma11112338

  8. Yang C, Zhang C, Xing W, Liu L (2018) 3D printing of Zr-based bulk metallic glasses with complex geometries and enhanced catalytic properties. Intermetallics 94:22–28. https://doi.org/10.1016/j.intermet.2017.12.018

    Article  Google Scholar 

  9. Mohr M, Wunderlich RK, Zweiacker K, Prades-Rodel S, Sauget R, Blatter A, Loge R, Dommann A, Neels A, Johnson WL, Fecht HJ (2019) Surface tension and viscosity of liquid Pd43Cu27Ni10P20 measured in a levitation device under microgravity. NPJ Microgravity 5:4. https://doi.org/10.1038/s41526-019-0065-4

    Article  Google Scholar 

  10. Perim E, Lee D, Liu Y, Toher C, Gong P, Li Y, Simmons WN, Levy O, Vlassak JJ, Schroers J, Curtarolo S (2016) Spectral descriptors for bulk metallic glasses based on the thermodynamics of competing crystalline phases. Nat Commun 7:12315. https://doi.org/10.1038/ncomms12315

    Article  Google Scholar 

  11. Liu Z, Chen W, Carstensen J, Ketkaew J, Ojeda Mota RM, Guest JK, Schroers J (2016) 3D metallic glass cellular structures. Acta Mater 105:35–43. https://doi.org/10.1016/j.actamat.2015.11.057

    Article  Google Scholar 

  12. Li XP, Kang CW, Huang H, Sercombe TB (2014) The role of a low-energy–density re-scan in fabricating crack-free Al85Ni5Y6Co2Fe2 bulk metallic glass composites via selective laser melting. Mater Des 63:407–411. https://doi.org/10.1016/j.matdes.2014.06.022

    Article  Google Scholar 

  13. Rizzi P, Habib A, Castellero A, Battezzati L (2013) Ductility and toughness of cold-rolled metallic glasses. Intermetallics 33:38–43. https://doi.org/10.1016/j.intermet.2012.09.026

    Article  Google Scholar 

  14. Li JB, Lin HC, Jang JSC, Kuo CN, Huang JC (2013) Novel open-cell bulk metallic glass foams with promising characteristics. Mater Lett 105:140–143. https://doi.org/10.1016/j.matlet.2013.04.071

    Article  Google Scholar 

  15. Chen M (2011) A brief overview of bulk metallic glasses. NPG Asia Mater 3(9):82–90. https://doi.org/10.1038/asiamat.2011.30

    Article  Google Scholar 

  16. Ekambaram R, Thamburaja P, Nikabdullah N (2008) On the evolution of free volume during the deformation of metallic glasses at high homologous temperatures. Mech Mater 40(6):487–506. https://doi.org/10.1016/j.mechmat.2007.11.005

    Article  MATH  Google Scholar 

  17. Xingchao Z, Yong Z, Hao T, Li Y, Xiaohua C, Guoliang C (2007) Micro-electro-discharge machining of bulk metallic glasses. Paper presented at the High Density Design Packaging and Microsystem Integration, 2007 International Symposium on

  18. Tan H, Zhang Y, Ma D, Feng YP, Li Y (2003) Optimum glass formation at off-eutectic composition and its relation to skewed eutectic coupled zone in the La based La–Al–(Cu,Ni) pseudo ternary system. Acta Mater 51(15):4551–4561. https://doi.org/10.1016/s1359-6454(03)00291-x

    Article  Google Scholar 

  19. Huang R, Suo Z, Prevost JH, Nix WD (2002) Inhomogeneous deformation in metallic glasses. J Mech Phys Solids 50(5):1011–1027. https://doi.org/10.1016/s0022-5096(01)00115-6

    Article  MATH  Google Scholar 

  20. Argon AS (1979) Plastic deformation in metallic glasses. Acta Metall 27(1):47–58. https://doi.org/10.1016/0001-6160(79)90055-5

    Article  Google Scholar 

  21. Spaepen F (1977) A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall 25(4):407–415. https://doi.org/10.1016/0001-6160(77)90232-2

    Article  Google Scholar 

  22. Hofmann DC, Roberts SN (2015) Microgravity metal processing: from undercooled liquids to bulk metallic glasses. NPJ Microgravity 1:15003. https://doi.org/10.1038/npjmgrav.2015.3

    Article  Google Scholar 

  23. Davidson M, Roberts S, Castro G, Dillon RP, Kunz A, Kozachkov H, Demetriou MD, Johnson WL, Nutt S, Hofmann DC (2013) Investigating amorphous metal composite architectures as spacecraft shielding. Adv Eng Mater 15(1-2):27–33. https://doi.org/10.1002/adem.201200313

    Article  Google Scholar 

  24. Fan M, Nawano A, Schroers J, Shattuck MD, O’Hern CS (2019) Intrinsic dissipation mechanisms in metallic glass resonators. J Chem Phys 151(14):144506. https://doi.org/10.1063/1.5116895

    Article  Google Scholar 

  25. Khan MM, Nemati A, Rahman ZU, Shah UH, Asgar H, Haider W (2017) Recent advancements in bulk metallic glasses and their applications: a review. Crit Rev Solid State Mater Sci 43(3):233–268. https://doi.org/10.1080/10408436.2017.1358149

    Article  Google Scholar 

  26. Gu J, Yang X, Zhang A, Shao Y, Zhao S, Yao K (2019) Centimeter-sized Ti-rich bulk metallic glasses with superior specific strength and corrosion resistance. J Non-Cryst Solids 512:206–210. https://doi.org/10.1016/j.jnoncrysol.2018.10.034

    Article  Google Scholar 

  27. Park ES (2015) Understanding of the shear bands in amorphous metals. Appl Microsc 45(2):63–73. https://doi.org/10.9729/am.2015.45.2.63

    Article  Google Scholar 

  28. Yang BJ, Lu WY, Zhang JL, Wang JQ, Ma E (2017) Melt fluxing to elevate the forming ability of Al-based bulk metallic glasses. Sci Rep 7(1):11053. https://doi.org/10.1038/s41598-017-11504-6

    Article  Google Scholar 

  29. Yazici ZO, Hitit A, Yalcin Y, Ozgul M (2016) Effects of minor Cu and Si additions on glass forming ability and mechanical properties of Co-Fe-Ta-B Bulk metallic glass. Met Mater Int 22(1):50–57. https://doi.org/10.1007/s12540-016-5220-9

    Article  Google Scholar 

  30. Song KK, Wu DY, Pauly S, Peng CX, Wang L, Eckert J (2015) Thermal stability of B2 CuZr phase, microstructural evolution and martensitic transformation in Cu–Zr–Ti alloys. Intermetallics 67:177–184. https://doi.org/10.1016/j.intermet.2015.08.015

    Article  Google Scholar 

  31. Babilas R, Cesarz-Andraczke K, Nowosielski R (2015) Structure and properties of Mg-Cu-(Y,Ca) bulk metallic glasses [Struktura I Własności Masywnych Szkieł Metalicznych Mg-Cu-(Y,Ca)]. Arch Metall Mater 60(4):2645–2650. https://doi.org/10.1515/amm-2015-0427

    Article  Google Scholar 

  32. Ramasamy P, Szabo A, Borzel S, Eckert J, Stoica M, Bardos A (2016) High pressure die casting of Fe-based metallic glass. Sci Rep 6:35258. https://doi.org/10.1038/srep35258

    Article  Google Scholar 

  33. Laws KJ, Gun B, Ferry M (2008) Large-scale production of Ca65Mg15Zn20 bulk metallic glass samples by low-pressure die-casting. Mater Sci Eng A 475(1-2):348–354. https://doi.org/10.1016/j.msea.2007.04.059

    Article  Google Scholar 

  34. Nowosielski B (2007) Fabrication of bulk metallic glasses by centrifugal casting method, vol 20.

  35. Chen ZP, Gao JE, Wu Y, Wang H, Liu XJ, Lu ZP (2013) Designing novel bulk metallic glass composites with a high aluminum content. Sci Rep 3:3353. https://doi.org/10.1038/srep03353

    Article  Google Scholar 

  36. Kim J, Lee T (2017) Brazing method to join a novel Cu54Ni6Zr22Ti18 bulk metallic glass to carbon steel. Sci Technol Weld Join 22(8):714–718. https://doi.org/10.1080/13621718.2017.1306155

    Article  MathSciNet  Google Scholar 

  37. Aliyu AAA, Abdul-Rani AM, Rao TVVLN, Axinte E, Hastuty S, Parameswari RP, Subramaniam JR, Thyagarajan SP (2019) Characterization, adhesion strength and in-vitro cytotoxicity investigation of hydroxyapatite coating synthesized on Zr-based BMG by electro discharge process. Surf Coat Technol 370:213–226. https://doi.org/10.1016/j.surfcoat.2019.04.084

    Article  Google Scholar 

  38. Zhang L, Huang H (2018) Micro machining of bulk metallic glasses: a review. Int J Adv Manuf Technol 100(1-4):637–661. https://doi.org/10.1007/s00170-018-2726-y

    Article  Google Scholar 

  39. Best JP, Ast J, Li B, Stolpe M, Busch R, Yang F, Li X, Michler J, Kruzic JJ (2020) Relating fracture toughness to micro-pillar compression response for a laser powder bed additive manufactured bulk metallic glass. Mater Sci Eng A:770. https://doi.org/10.1016/j.msea.2019.138535

  40. Lu Y, Huang Y, Wu J, Lu X, Qin Z, Daisenberger D, Chiu Y-L (2018) Graded structure of laser direct manufacturing bulk metallic glass. Intermetallics 103:67–71. https://doi.org/10.1016/j.intermet.2018.10.005

    Article  Google Scholar 

  41. Lu Y, Huang Y, Wu J (2018) Laser additive manufacturing of structural-graded bulk metallic glass. J Alloys Compd 766:506–510. https://doi.org/10.1016/j.jallcom.2018.06.259

    Article  Google Scholar 

  42. Khan MM, Shabib I, Haider W (2019) A combinatorially developed Zr-Ti-Fe-Al metallic glass with outstanding corrosion resistance for implantable medical devices. Scr Mater 162:223–229. https://doi.org/10.1016/j.scriptamat.2018.11.011

    Article  Google Scholar 

  43. Zhang ZF, Eckert J, Schultz L (2003) Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater 51(4):1167–1179. https://doi.org/10.1016/s1359-6454(02)00521-9

    Article  Google Scholar 

  44. Scudino S, Bian JJ, Shakur Shahabi H, Sopu D, Sort J, Eckert J, Liu G (2018) Ductile bulk metallic glass by controlling structural heterogeneities. Sci Rep 8(1):9174. https://doi.org/10.1038/s41598-018-27285-5

    Article  Google Scholar 

  45. Song Z-Q, He Q, Ma E, Xu J (2015) Fatigue endurance limit and crack growth behavior of a high-toughness Zr61Ti2Cu25Al12 bulk metallic glass. Acta Mater 99:165–175. https://doi.org/10.1016/j.actamat.2015.07.071

    Article  Google Scholar 

  46. J-i J, Yoo B-G, Kim Y-J, Oh J-H, Choi I-C, Bei H (2011) Indentation size effect in bulk metallic glass. Scr Mater 64(8):753–756. https://doi.org/10.1016/j.scriptamat.2010.12.036

    Article  Google Scholar 

  47. Aqida SN, Shah LH, Naher S, Brabazon D (2014) Rapid solidification processing and bulk metallic glass casting. In: Comprehensive materials processing, pp 69–88. https://doi.org/10.1016/b978-0-08-096532-1.00506-9

    Chapter  Google Scholar 

  48. Ferry M, Laws KJ, White C, Miskovic DM, Shamlaye KF, Xu W, Biletska O (2013) Recent developments in ductile bulk metallic glass composites. MRS Commun 3(1):1–12. https://doi.org/10.1557/mrc.2012.32

    Article  Google Scholar 

  49. Louzguine-Luzgin DV, Ketov SV, Wang Z, Miyama MJ, Tsarkov AA, Churyumov AY (2014) Plastic deformation studies of Zr-based bulk metallic glassy samples with a low aspect ratio. Mater Sci Eng A 616:288–296. https://doi.org/10.1016/j.msea.2014.08.006

    Article  Google Scholar 

  50. Wang F, Li JM, Huang P, Wang WL, Lu TJ, Xu KW (2013) Nanoscale creep deformation in Zr-based metallic glass. Intermetallics 38:156–160. https://doi.org/10.1016/j.intermet.2013.03.006

    Article  Google Scholar 

  51. Telford M (2004) The case for bulk metallic glass. Mater Today 7(3):36–43. https://doi.org/10.1016/s1369-7021(04)00124-5

    Article  Google Scholar 

  52. Li Y, Zhao S, Liu Y, Gong P, Schroers J (2017) How many bulk metallic glasses are there? ACS Comb Sci 19(11):687–693. https://doi.org/10.1021/acscombsci.7b00048

    Article  Google Scholar 

  53. Zhao SF, Yang GN, Ding HY, Yao KF (2015) A quinary Ti–Zr–Hf–Be–Cu high entropy bulk metallic glass with a critical size of 12 mm. Intermetallics 61:47–50. https://doi.org/10.1016/j.intermet.2015.02.011

    Article  Google Scholar 

  54. Nishiyama N, Takenaka K, Miura H, Saidoh N, Zeng Y, Inoue A (2012) The world’s biggest glassy alloy ever made. Intermetallics 30:19–24. https://doi.org/10.1016/j.intermet.2012.03.020

    Article  Google Scholar 

  55. Cui X, Zu FQ, Wang ZZ, Huang ZY, Li XY, Wang LF (2013) Study of the reversible intermetallic phase: B2-type CuZr. Intermetallics 36:21–24. https://doi.org/10.1016/j.intermet.2012.12.008

    Article  Google Scholar 

  56. Sepulveda-Macias M, Amigo N, Gutierrez G (2018) Tensile behavior of Cu 50 Zr 50 metallic glass nanowire with a B2 crystalline precipitate. Phys B Condens Matter 531:64–69. https://doi.org/10.1016/j.physb.2017.12.005

    Article  Google Scholar 

  57. Song KK, Pauly S, Zhang Y, Gargarella P, Li R, Barekar NS, Kühn U, Stoica M, Eckert J (2011) Strategy for pinpointing the formation of B2 CuZr in metastable CuZr-based shape memory alloys. Acta Mater 59(17):6620–6630. https://doi.org/10.1016/j.actamat.2011.07.017

    Article  Google Scholar 

  58. Spieckermann F, Steffny I, Bian X, Ketov S, Stoica M, Eckert J (2019) Fast and direct determination of fragility in metallic glasses using chip calorimetry. Heliyon 5(3):e01334. https://doi.org/10.1016/j.heliyon.2019.e01334

    Article  Google Scholar 

  59. Li Z, Huang Z, Sun F, Li X, Ma J (2020) Forming of metallic glasses: mechanisms and processes. Mater Today Adv 7. https://doi.org/10.1016/j.mtadv.2020.100077

  60. Yang GN, Shao Y, Yao KF, Chen SQ (2015) A study of cooling process in bulk metallic glasses fabrication. AIP Adv 5(11). https://doi.org/10.1063/1.4935440

  61. Lu ZP, Liu CT (2002) A new glass-forming ability criterion for bulk metallic glasses. Acta Mater 50(13):3501–3512. https://doi.org/10.1016/s1359-6454(02)00166-0

    Article  Google Scholar 

  62. Wang WH, Dong C, Shek CH (2004) Bulk metallic glasses. Mater Sci Eng R Rep 44(2-3):45–89. https://doi.org/10.1016/j.mser.2004.03.001

    Article  Google Scholar 

  63. Ma H, Zheng Q, Xu J, Li Y, Ma E (2005) Doubling the critical size for bulk metallic glass formation in the Mg-Cu-Y ternary system. J Mater Res 20(9):2252–2255. https://doi.org/10.1557/Jmr.2005.0307

    Article  Google Scholar 

  64. Hofmann DC, Polit-Casillas R, Roberts SN, Borgonia JP, Dillon RP, Hilgemann E, Kolodziejska J, Montemayor L, Suh JO, Hoff A, Carpenter K, Parness A, Johnson WL, Kennett A, Wilcox B (2016) Castable bulk metallic glass strain wave gears: towards decreasing the cost of high-performance robotics. Sci Rep 6:37773. https://doi.org/10.1038/srep37773

    Article  Google Scholar 

  65. Lou HB, Wang XD, Xu F, Ding SQ, Cao QP, Hono K, Jiang JZ (2011) 73 mm-diameter bulk metallic glass rod by copper mould casting. Appl Phys Lett 99(5). https://doi.org/10.1063/1.3621862

  66. Sun Y, Huang Y, Fan H, Liu F, Shen J, Sun J, Chen JJJ (2014) Comparison of mechanical behaviors of several bulk metallic glasses for biomedical application. J Non-Cryst Solids 406:144–150. https://doi.org/10.1016/j.jnoncrysol.2014.09.021

    Article  Google Scholar 

  67. Senkov ON, Miracle DB, Keppens V, Liaw PK (2007) Development and characterization of low-density Ca-based bulk metallic glasses: an overview. Metall Mater Trans A 39(8):1888–1900. https://doi.org/10.1007/s11661-007-9334-z

    Article  Google Scholar 

  68. Cao JD, Kirkland NT, Laws KJ, Birbilis N, Ferry M (2012) Ca-Mg-Zn bulk metallic glasses as bioresorbable metals. Acta Biomater 8(6):2375–2383. https://doi.org/10.1016/j.actbio.2012.03.009

    Article  Google Scholar 

  69. Guo FQ, Poon SJ, Shiflet GJ (2000) Investigation of glass formability in Al-based multinary alloys. Scr Mater 43(12):1089–1095. https://doi.org/10.1016/S1359-6462(00)00540-6

    Article  Google Scholar 

  70. Yang BJ, Yao JH, Chao YS, Wang JQ, Ma E (2010) Developing aluminum-based bulk metallic glasses. Philos Mag 90(23):3215–3231. https://doi.org/10.1080/14786435.2010.484401

    Article  Google Scholar 

  71. Zhang C, Qiu N, Kong L, Yang X, Li H (2015) Thermodynamic and structural basis for electrochemical response of Cu–Zr based metallic glass. J Alloys Compd 645:487–490. https://doi.org/10.1016/j.jallcom.2015.03.255

    Article  Google Scholar 

  72. Marandi K, Thamburaja P, Shim VPW (2014) Constitutive description of bulk metallic glass composites at high homologous temperatures. Mech Mater 75:151–164. https://doi.org/10.1016/j.mechmat.2014.04.008

    Article  Google Scholar 

  73. Yang G-N, Shao Y, Yao K-F (2019) Understanding the fracture behaviors of metallic glasses—an overview. Appl Sci 9(20). https://doi.org/10.3390/app9204277

  74. Yao ZF, Qiao JC, Pelletier JM, Yao Y (2016) High temperature deformation behaviors of the Zr63.36Cu14.52Ni10.12Al12 bulk metallic glass. J Mater Sci 51(8):4079–4087. https://doi.org/10.1007/s10853-016-9729-6

    Article  Google Scholar 

  75. Lu ZP, Liu CT, Thompson JR, Porter WD (2004) Structural amorphous steels. Phys Rev Lett 92(24):245503. https://doi.org/10.1103/PhysRevLett.92.245503

    Article  Google Scholar 

  76. Liao JP, Yang BJ, Zhang Y, Lu WY, Gu XJ, Wang JQ (2015) Evaluation of glass formation and critical casting diameter in Al-based metallic glasses. Mater Des 88:222–226. https://doi.org/10.1016/j.matdes.2015.08.138

    Article  Google Scholar 

  77. Yang Q, Huang J, Qin X-H, Ge F-X, Yu H-B (2019) Revealing hidden supercooled liquid states in Al-based metallic glasses by ultrafast scanning calorimetry: Approaching theoretical ceiling of liquid fragility. Sci China Mater. https://doi.org/10.1007/s40843-019-9478-3

  78. Yang Q, Yu Y, Sun Z, Wang Z (2018) Effects of La and Be on glass-forming Ability of Al84Co8Y8 Metallic Glass. In: Advanced functional materials, pp 259–266. https://doi.org/10.1007/978-981-13-0110-0_29

    Chapter  Google Scholar 

  79. A-h C, Xiong X, Liu Y, Zhou Y, W-k A, Luo Y (2010) Choose Gibbs free energy difference model for metallic glasses. J Non-Cryst Solids 356(28-30):1498–1501. https://doi.org/10.1016/j.jnoncrysol.2010.04.024

    Article  Google Scholar 

  80. Zhou Y, Huang WM, Zhao Y, Ding Z, Li Y, Tor SB, Liu E (2016) Memory phenomenon in a lanthanum based bulk metallic glass. J Alloys Compd 672:131–136. https://doi.org/10.1016/j.jallcom.2016.02.114

    Article  Google Scholar 

  81. Halim Q, Nikabdullah N, Rejab MRM, Rashidi M (2020) Fracture response of La61.4Al15.9Ni11.35Cu11.35 bulk metallic glass subjected to quasi-static compression loading. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.03.662

  82. Quanjin M, Rejab MRM, Halim Q, Merzuki MNM, Darus MAH (2020) Experimental investigation of the tensile test using digital image correlation (DIC) method. Mater Today Proc. https://doi.org/10.1016/j.matpr.2019.12.072

  83. Banerjee A, Jiang C, Lohiya L, Yang Y, Lu Y (2016) Fracto-emission in lanthanum-based metallic glass microwires under quasi-static tensile loading. J Appl Phys 119(15). https://doi.org/10.1063/1.4946824

  84. Qiao JC, Pelletier JM, Yao Y (2019) Creep in bulk metallic glasses. Transition from linear to non linear regime. Mater Sci Eng A 743:185–189. https://doi.org/10.1016/j.msea.2018.11.066

    Article  Google Scholar 

  85. Qi X, Zou Y, Wang X, Chen T, Welch DO, Jiang J, Li B (2017) Elastic anomaly and polyamorphic transition in (La, Ce)-based bulk metallic dlass under pressure. Sci Rep 7(1):724. https://doi.org/10.1038/s41598-017-00737-0

    Article  Google Scholar 

  86. Dambatta MS, Izman S, Yahaya B, Lim JY, Kurniawan D (2015) Mg-based bulk metallic glasses for biodegradable implant materials: a review on glass forming ability, mechanical properties, and biocompatibility. J Non-Cryst Solids 426:110–115. https://doi.org/10.1016/j.jnoncrysol.2015.07.018

    Article  Google Scholar 

  87. Peker A, Johnson WL (1993) A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl Phys Lett 63(17):2342–2344. https://doi.org/10.1063/1.110520

    Article  Google Scholar 

  88. Schawe JEK, Pogatscher S, Löffler JF (2020) Thermodynamics of polymorphism in a bulk metallic glass: Heat capacity measurements by fast differential scanning calorimetry. Thermochim Acta 685. https://doi.org/10.1016/j.tca.2020.178518

  89. Korkmaz S, Kariper İA (2020) Glass formation, production and superior properties of Zr-based thin film metallic glasses (TFMGs): A status review. J Non-Cryst Solids 527. https://doi.org/10.1016/j.jnoncrysol.2019.119753

  90. Gao X-f, Ge N, Dong F-y, Wang R-c, Yang H-w (2018) Deformation and fracture of a Zr-Al-Cu metallic glass ribbon under tension near glass transition temperature. China Foundry 15(3):216–221. https://doi.org/10.1007/s41230-018-8054-x

    Article  Google Scholar 

  91. Cao CR, Huang KQ, Shi JA, Zheng DN, Wang WH, Gu L, Bai HY (2019) Liquid-like behaviours of metallic glassy nanoparticles at room temperature. Nat Commun 10(1):1966. https://doi.org/10.1038/s41467-019-09895-3

    Article  Google Scholar 

  92. Takeuchi A, Yubuta K, Makino A, Inoue A (2009) Evaluation of glass-forming ability of binary metallic glasses with liquidus temperature, crystallographic data from binary phase diagrams and molecular dynamics simulations. J Alloys Compd 483(1-2):102–106. https://doi.org/10.1016/j.jallcom.2008.07.186

    Article  Google Scholar 

  93. Ding S, Liu Y, Li Y, Liu Z, Sohn S, Walker FJ, Schroers J (2014) Combinatorial development of bulk metallic glasses. Nat Mater 13(5):494–500. https://doi.org/10.1038/nmat3939

    Article  Google Scholar 

  94. Inoue A, Shinohara Y, Gook JS (1995) Thermal and magnetic properties of bulk Fe-based glassy alloys prepared by copper mold casting. Mater Trans JIM 36(12):1427–1433. https://doi.org/10.2320/matertrans1989.36.1427

    Article  Google Scholar 

  95. Burgess T, Ferry M (2009) Nanoindentation of metallic glasses. Mater Today 12(1-2):24–32. https://doi.org/10.1016/s1369-7021(09)70039-2

    Article  Google Scholar 

  96. Quanjin M, Salim MSA, Rejab MRM, Bernhardi O-E, Nasution AY (2019) Quasi-static crushing response of square hybrid carbon/aramid tube for automotive crash box application. Mater Today Proc. https://doi.org/10.1016/j.matpr.2019.10.161

  97. Srivastava AP, Tong M, Ștefanov T, Browne DJ (2017) Elimination of porosity in bulk metallic glass castings using hot isostatic pressing. J Non-Cryst Solids 468:5–11. https://doi.org/10.1016/j.jnoncrysol.2017.04.007

    Article  Google Scholar 

  98. Wada T, Inoue A (2004) Formation of porous Pd-based bulk glassy alloys by a high hydrogen pressure melting-water quenching method and their mechanical properties. Mater Trans 45(8):2761–2765. https://doi.org/10.2320/matertrans.45.2761

    Article  Google Scholar 

  99. Wada T, Takenaka K, Nishiyama N, Inoue A (2005) Formation and mechanical properties of porous Pd-Pt-Cu-P bulk glassy alloys. Mater Trans 46(12):2777–2780. https://doi.org/10.2320/matertrans.46.2777

    Article  Google Scholar 

  100. Brothers AH, Dunand DC (2004) Syntactic bulk metallic glass foam. Appl Phys Lett 84(7):1108–1110. https://doi.org/10.1063/1.1646467

    Article  Google Scholar 

  101. Qiu F, Liu Y, Guo R, Bai Z, Jiang Q (2013) Effect of oxygen content on the microstructure, compression properties and work-hardening behaviors of ZrCuAlNi glassy composites. Mater Sci Eng A 580:13–20. https://doi.org/10.1016/j.msea.2013.05.037

    Article  Google Scholar 

  102. Brothers AH, Dunand DC (2005) Ductile bulk metallic glass foams. Adv Mater 17(4):484–486. https://doi.org/10.1002/adma.200400897

    Article  Google Scholar 

  103. Dasgupta A, Broderick SR, Mack C, Kota BU, Subramanian R, Setlur S, Govindaraju V, Rajan K (2019) Probabilistic assessment of glass forming ability rules for metallic glasses aided by automated analysis of phase diagrams. Sci Rep 9(1):357. https://doi.org/10.1038/s41598-018-36224-3

    Article  Google Scholar 

  104. Schawe JEK, Loffler JF (2019) Existence of multiple critical cooling rates which generate different types of monolithic metallic glass. Nat Commun 10(1):1337. https://doi.org/10.1038/s41467-018-07930-3

    Article  Google Scholar 

  105. Cao CR, Ding DW, Zhao DQ, Axinte E, Bai HY, Wang WH (2014) Correlation between glass transition temperature and melting temperature in metallic glasses. Mater Des 60:576–579. https://doi.org/10.1016/j.matdes.2014.04.021

    Article  Google Scholar 

  106. Das J, Tang MB, Kim KB, Theissmann R, Baier F, Wang WH, Eckert J (2005) “Work-Hardenable” ductile bulk metallic glass. Phys Rev Lett 94(20):205501. https://doi.org/10.1103/PhysRevLett.94.205501

    Article  Google Scholar 

  107. Li N, Zhang J, Xing W, Ouyang D, Liu L (2018) 3D printing of Fe-based bulk metallic glass composites with combined high strength and fracture toughness. Mater Des 143:285–296. https://doi.org/10.1016/j.matdes.2018.01.061

    Article  Google Scholar 

  108. Ouyang D, Li N, Xing W, Zhang J, Liu L (2017) 3D printing of crack-free high strength Zr-based bulk metallic glass composite by selective laser melting. Intermetallics 90:128–134. https://doi.org/10.1016/j.intermet.2017.07.010

    Article  Google Scholar 

  109. Gunderov D, Boltynjuk E, Ubyivovk E, Churakova A, Kilmametov A, Valiev R (2019) Consolidation of the amorphous Zr50Cu50 ribbons by high-pressure torsion. Adv Eng Mater. https://doi.org/10.1002/adem.201900694

  110. Wang X (2014) Surface crystallization in Mg-based nulk metallic glass during copper mold casting. Adv Mater Sci Eng 2014:1–4. https://doi.org/10.1155/2014/798479

    Article  Google Scholar 

  111. Li BS, Xie S, Kruzic JJ (2019) Toughness enhancement and heterogeneous softening of a cryogenically cycled Zr–Cu–Ni–Al–Nb bulk metallic glass. Acta Mater 176:278–288. https://doi.org/10.1016/j.actamat.2019.07.012

    Article  Google Scholar 

  112. Haag F, Geisel S, Kurtuldu G, Löffler JF (2018) Bulk metallic glass casting investigated using high-speed infrared monitoring and complementary fast scanning calorimetry. Acta Mater 151:416–423. https://doi.org/10.1016/j.actamat.2018.02.029

    Article  Google Scholar 

  113. Aversa R, Parcesepe D, Petrescu RVV, Berto F, Chen G, Petrescu FIT, Tamburrino F, Apicella A (2017) Processability of bulk metallic glasses. Am J Appl Sci 14(2):294–301. https://doi.org/10.3844/ajassp.2017.294.301

    Article  Google Scholar 

  114. Pilarczyk W (2018) Structure and properties of Zr-based bulk metallic glasses in As-cast state and after laser welding. Materials (Basel) 11(7). https://doi.org/10.3390/ma11071117

  115. Wessels V, Grigoryev A, Dold C, Wyen C-F, Roth R, Weingärtner E, Pude F, Wegener K, Löffler JF (2012) Abrasive waterjet machining of three-dimensional structures from bulk metallic glasses and comparison with other techniques. J Mater Res 27(8):1187–1192. https://doi.org/10.1557/jmr.2012.36

    Article  Google Scholar 

  116. Liu WD, Ye LM, Liu KX (2011) Micro-nano scale ripples on metallic glass induced by laser pulse. J Appl Phys 109(4):043109–043109-043105. https://doi.org/10.1063/1.3552914

    Article  MathSciNet  Google Scholar 

  117. Chen X-Q, Niu H, Li D, Li Y (2011) Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 19(9):1275–1281. https://doi.org/10.1016/j.intermet.2011.03.026

    Article  Google Scholar 

  118. Madge S (2015) Toughness of bulk metallic glasses. Metals-Basel 5(3):1279–1305. https://doi.org/10.3390/met5031279

    Article  Google Scholar 

  119. Schroers J, Johnson WL (2004) Ductile bulk metallic glass. Phys Rev Lett 93(25):255506. https://doi.org/10.1103/PhysRevLett.93.255506

    Article  Google Scholar 

  120. Kolodziejska JA, Kozachkov H, Kranjc K, Hunter A, Marquis E, Johnson WL, Flores KM, Hofmann DC (2016) Towards an understanding of tensile deformation in Ti-based bulk metallic glass matrix composites with BCC dendrites. Sci Rep 6:22563. https://doi.org/10.1038/srep22563

    Article  Google Scholar 

  121. Zhai H, Wang H, Liu F (2016) A strategy for designing bulk metallic glass composites with excellent work-hardening and large tensile ductility. J Alloys Compd 685:322–330. https://doi.org/10.1016/j.jallcom.2016.05.290

    Article  Google Scholar 

  122. Ekambaram R, Thamburaja P, Yang H, Li Y, Nikabdullah N (2010) The multi-axial deformation behavior of bulk metallic glasses at high homologous temperatures. Int J Solids Struct 47(5):678–690. https://doi.org/10.1016/j.ijsolstr.2009.11.008

    Article  MATH  Google Scholar 

  123. Dong F, He M, Zhang Y, Wang B, Luo L, Su Y, Yang H, Yuan X (2019) Investigation of shear transformation zone and ductility of Zr-based bulk metallic glass after plasma-assisted hydrogenation. Mater Sci Eng A 759:105–111. https://doi.org/10.1016/j.msea.2019.05.027

    Article  Google Scholar 

  124. Shin H-S, Jeong Y-J, Choi H-Y, Kato H, Inoue A (2007) Joining of Zr-based bulk metallic glasses using the friction welding method. J Alloys Compd 434-435:102–105. https://doi.org/10.1016/j.jallcom.2006.08.129

    Article  Google Scholar 

  125. Chen B, Shi TL, Li M, Yang F, Yan F, Liao GL (2014) Laser welding of annealed Zr55Cu30Ni5Al10 bulk metallic glass. Intermetallics 46:111–117. https://doi.org/10.1016/j.intermet.2013.11.008

    Article  Google Scholar 

  126. Chen B, Shi T, Li M, Wen C, Liao G (2015) Crystallization of Zr55Cu30Al10Ni5 bulk metallic glass in laser welding: simulation and experiment. Adv Eng Mater 17(4):483–490. https://doi.org/10.1002/adem.201400145

    Article  Google Scholar 

  127. Kumar R, Kumar R, Chattopadhyaya S, Ghosh A, Kumar A (2015) Friction stir welding of BMG’s: a review.

  128. Zhang H, Lu Y, Huang Y, Feng A, Qin Z, Lu X (2015) Joining of Zr 51 Ti 5 Ni 10 Cu 25 Al 9 BMG to aluminum alloy by friction stir welding. Vacuum 120:47–49. https://doi.org/10.1016/j.vacuum.2015.06.020

    Article  Google Scholar 

  129. Huang Y, Xue P, Guo S, Wu Y, Cheng X, Fan H, Ning Z, Cao F, Xing D, Sun J, Liaw PK (2016) Liquid-solid joining of bulk metallic glasses. Sci Rep 6:30674. https://doi.org/10.1038/srep30674

    Article  Google Scholar 

  130. Aliyu AA, Abdul-Rani AM, Ginta TL, Rao TVVLN, Axinte E, Ali S, Ramli M (2019) Hydroxyapatite electro discharge coating of Zr-based bulk metallic glass for potential orthopedic application. Key Eng Mater 796:123–128. https://doi.org/10.4028/www.scientific.net/KEM.796.123

    Article  Google Scholar 

  131. Aliyu AAA, Abdul-Rani AM, Ginta TL, Prakash C, TVVLN R, Axinte E, Ali S (2019) Synthesis and characterization of bioceramic oxide coating on Zr-Ti-Cu-Ni-Be BMG by electro discharge process. In: Advances in manufacturing II. Lecture Notes in Mechanical Engineering, pp 518–531. https://doi.org/10.1007/978-3-030-16943-5_44

    Chapter  Google Scholar 

  132. Aliyu AAA, Abdul-Rani AM, Ginta TL, Rao TVVLN, Selvamurugan N, Roy S (2018) Hydroxyapatite mixed-electro discharge formation of bioceramic Lakargiite (CaZrO3) on Zr–Cu–Ni–Ti–Be for orthopedic application. Mater Manuf Process 33(16):1734–1744. https://doi.org/10.1080/10426914.2018.1512122

    Article  Google Scholar 

  133. Abdul-Rani AM, Aliyu AAA, Hastuty S, Ginta TL, Rao TVVLN, Ali S (2018) Enhancing surface quality of Zr-Cu-Ni-Ti-Be through hydroxyapatite mixed EDM for potential orthopedic application.

  134. Saotome Y, Toghashi N, Shimizu Y, Inoue A (2012) Development of a micro geared motor with 0.9 mm outer diameter. Paper presented at the Proceedings of the 9th International Conference on Multi-Material Micro Manufacture

  135. Lewandowski JJ, Seifi M (2016) Metal additive manufacturing: a review of mechanical properties. Annu Rev Mater Res 46(1):151–186. https://doi.org/10.1146/annurev-matsci-070115-032024

    Article  Google Scholar 

  136. Xing W, Ouyang D, Li N, Liu L (2018) Insight into micro-cracking in 3D-printed Fe-based BMGs by selective laser melting. Intermetallics 103:101–106. https://doi.org/10.1016/j.intermet.2018.10.011

    Article  Google Scholar 

  137. Lewandowski JJ, Lowhaphandu P (2002) Effects of hydrostatic pressure on the flow and fracture of a bulk amorphous metal. Philos Mag A 82(17-18):3427–3441. https://doi.org/10.1080/01418610208240453

    Article  Google Scholar 

  138. Wright WJ, Long AA, Gu X, Liu X, Hufnagel TC, Dahmen KA (2018) Slip statistics for a bulk metallic glass composite reflect its ductility. J Appl Phys 124(18). https://doi.org/10.1063/1.5051723

  139. Song KK, Han XL, Pauly S, Qin YS, Kosiba K, Peng CX, Gong JH, Chen PX, Wang L, Sarac B, Ketov S, Mühlbacher M, Spieckermann F, Kaban I, Eckert J (2018) Rapid and partial crystallization to design ductile CuZr-based bulk metallic glass composites. Mater Des 139:132–140. https://doi.org/10.1016/j.matdes.2017.11.008

    Article  Google Scholar 

  140. Wu Y, Ma D, Li QK, Stoica AD, Song WL, Wang H, Liu XJ, Stoica GM, Wang GY, An K, Wang XL, Li M, Lu ZP (2017) Transformation-induced plasticity in bulk metallic glass composites evidenced by in-situ neutron diffraction. Acta Mater 124:478–488. https://doi.org/10.1016/j.actamat.2016.11.029

    Article  Google Scholar 

  141. Zhang L, Zhang HF, Li WQ, Gemming T, Zhu ZW, Fu HM, Eckert J, Pauly S (2016) Negentropic stabilization of metastable β-Ti in bulk metallic glass composites. Scr Mater 125:19–23. https://doi.org/10.1016/j.scriptamat.2016.07.031

    Article  Google Scholar 

  142. Ning Z, Liang W, Zhang M, Li Z, Sun H, Liu A, Sun J (2016) High tensile plasticity and strength of a CuZr-based bulk metallic glass composite. Mater Des 90:145–150. https://doi.org/10.1016/j.matdes.2015.10.117

    Article  Google Scholar 

  143. Hofmann DC (2013) Bulk metallic glasses and their composites: a brief history of diverging fields. J Mater 2013:1–8. https://doi.org/10.1155/2013/517904

    Article  Google Scholar 

  144. Zhang M, Gong P, Li N, Zheng G, Deng L, Jin J, Li Q, Wang X (2019) Oxidation behavior of a Ti16.7Zr16.7Hf16.7Cu16.7Ni16.7Be16.7 high-entropy bulk metallic glass. Mater Lett 236:135–138. https://doi.org/10.1016/j.matlet.2018.10.056

    Article  Google Scholar 

  145. Qiao J, Jia H, Liaw PK (2016) Metallic glass matrix composites. Mater Sci Eng R Rep 100:1–69. https://doi.org/10.1016/j.mser.2015.12.001

    Article  Google Scholar 

  146. Tsai M-H (2016) Three strategies for the design of advanced high-entropy Alloys. Entropy-Switz 18(7). https://doi.org/10.3390/e18070252

  147. Gallino I, Cangialosi D, Evenson Z, Schmitt L, Hechler S, Stolpe M, Ruta B (2018) Hierarchical aging pathways and reversible fragile-to-strong transition upon annealing of a metallic glass former. Acta Mater 144:400–410. https://doi.org/10.1016/j.actamat.2017.10.060

    Article  Google Scholar 

  148. Glasscott MW, Pendergast AD, Goines S, Bishop AR, Hoang AT, Renault C, Dick JE (2019) Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis. Nat Commun 10(1):2650. https://doi.org/10.1038/s41467-019-10303-z

    Article  Google Scholar 

  149. Liu Y, Jiang MQ, Yang GW, Chen JH, Guan YJ, Dai LH (2012) Saffman–Taylor fingering in nanosecond pulse laser ablating bulk metallic glass in water. Intermetallics 31:325–329. https://doi.org/10.1016/j.intermet.2012.07.014

    Article  Google Scholar 

  150. Shah LH, Bun T, Nagata S, Shikama T (2012) The effects of gamma-ray on the mechanical properties of Zr-based bulk metallic glass. Int J Automot Mech Eng 6:713–721. https://doi.org/10.15282/ijame.6.2012.4.0058

    Article  Google Scholar 

  151. Shah LH, Tsuchiya B, Nagata S, Shikama T (2011) The effect of gamma-rays on the electrical properties of Zr55Ni5Al10Cu30 bulk metallic glass. J Nucl Mater 417(1-3):822–825. https://doi.org/10.1016/j.jnucmat.2010.12.287

    Article  Google Scholar 

  152. Brennhaugen DDE, Georgarakis K, Yokoyama Y, Nakayama KS, Arnberg L, Aune RE (2018) Tensile properties of Zr70Ni16Cu6Al8 BMG at room and cryogenic temperatures. J Alloys Compd 742:952–957. https://doi.org/10.1016/j.jallcom.2018.01.322

    Article  Google Scholar 

  153. Niezgoda SR, Gibbons MP, Windl W, Flores KM (2019) Shear banding in bulk metallic glass matrix composites with dendrite reinforcements. In: Proceedings of the First International Conference on Theoretical, Applied and Experimental Mechanics. Structural Integrity, pp 338–340. https://doi.org/10.1007/978-3-319-91989-8_75

  154. Wang JG, Hu YC, Guan PF, Song KK, Wang L, Wang G, Pan Y, Sarac B, Eckert J (2017) Hardening of shear band in metallic glass. Sci Rep 7(1):7076. https://doi.org/10.1038/s41598-017-07669-9

    Article  Google Scholar 

  155. He J, Kaban I, Mattern N, Song K, Sun B, Zhao J, Kim DH, Eckert J, Greer AL (2016) Local microstructure evolution at shear bands in metallic glasses with nanoscale phase separation. Sci Rep 6:25832. https://doi.org/10.1038/srep25832

    Article  Google Scholar 

  156. Qiao JC, Wang Y-J, Pelletier JM, Keer LM, Fine ME, Yao Y (2015) Characteristics of stress relaxation kinetics of La 60 Ni 15 Al 25 bulk metallic glass. Acta Mater 98:43–50. https://doi.org/10.1016/j.actamat.2015.07.020

    Article  Google Scholar 

  157. Ma Y, Peng GJ, Debela TT, Zhang TH (2015) Nanoindentation study on the characteristic of shear transformation zone volume in metallic glassy films. Scr Mater 108:52–55. https://doi.org/10.1016/j.scriptamat.2015.05.043

    Article  Google Scholar 

  158. Choi I-C, Zhao Y, Kim Y-J, Yoo B-G, Suh J-Y, Ramamurty U, J-i J (2012) Indentation size effect and shear transformation zone size in a bulk metallic glass in two different structural states. Acta Mater 60(19):6862–6868. https://doi.org/10.1016/j.actamat.2012.08.061

    Article  Google Scholar 

  159. Thamburaja P, Nikabdullah N (2011) The transition from homogeneous flow to fracture in metallic glasses at high-homologous temperatures. Scr Mater 65(9):751–754. https://doi.org/10.1016/j.scriptamat.2011.07.003

    Article  Google Scholar 

  160. Pan J, Ivanov YP, Zhou WH, Li Y, Greer AL (2020) Strain-hardening and suppression of shear-banding in rejuvenated bulk metallic glass. Nature 578(7796):559–562. https://doi.org/10.1038/s41586-020-2016-3

    Article  Google Scholar 

  161. Kruzic JJ (2016) Bulk metallic glasses as structural materials: a review. Adv Eng Mater 18(8):1308–1331. https://doi.org/10.1002/adem.201600066

    Article  Google Scholar 

  162. Aliaga LCR, Lima LVPC, Domingues GMB, Bastos IN, Evangelakis GA (2019) Experimental and molecular dynamics simulation study on the glass formation of Cu–Zr–Al alloys. Mater Res Express 6(4). https://doi.org/10.1088/2053-1591/aaf97e

  163. Lou H, Zeng Z, Zhang F, Chen S, Luo P, Chen X, Ren Y, Prakapenka VB, Prescher C, Zuo X, Li T, Wen J, Wang WH, Sheng H, Zeng Q (2020) Two-way tuning of structural order in metallic glasses. Nat Commun 11(1):314. https://doi.org/10.1038/s41467-019-14129-7

    Article  Google Scholar 

  164. Huang L, Pu C, Fisher RK, Mountain DJ, Gao Y, Liaw PK, Zhang W, He W (2015) A Zr-based bulk metallic glass for future stent applications: materials properties, finite element modeling, and in vitro human vascular cell response. Acta Biomater 25:356–368. https://doi.org/10.1016/j.actbio.2015.07.012

    Article  Google Scholar 

  165. Saraf Bidabad M, Saniei SZ (2013) Feasibility of Ti-based metallic glass coating in biomedical applications. Paper presented at the 2013 20th Iranian Conference on Biomedical Engineering (ICBME)

  166. Li HF, Zheng YF (2016) Recent advances in bulk metallic glasses for biomedical applications. Acta Biomater 36:1–20. https://doi.org/10.1016/j.actbio.2016.03.047

    Article  Google Scholar 

  167. Windl W (2016) Development of compositionally graded metallic glass alloys with desirable properties.

  168. Ikutomo R, Tsujikawa M, Hino M, Kimura H, Yubuta K, Inoue A (2013) Crystallisation by laser for Zr based bulk metallic glass. Int J Cast Met Res 21(1-4):148–151. https://doi.org/10.1179/136404608x361855

    Article  Google Scholar 

  169. Zhang Y, Lin X, Wang L, Wei L, Liu F, Huang W (2015) Microstructural analysis of Zr55Cu30Al10Ni5 bulk metallic glasses by laser surface remelting and laser solid forming. Intermetallics 66:22–30. https://doi.org/10.1016/j.intermet.2015.06.007

    Article  Google Scholar 

  170. Jiang MQ, Wei YP, Wilde G, Dai LH (2015) Explosive boiling of a metallic glass superheated by nanosecond pulse laser ablation. Appl Phys Lett 106(2). https://doi.org/10.1063/1.4905928

  171. Williams E, Brousseau EB (2016) Nanosecond laser processing of Zr 41.2 Ti 13.8 Cu 12.5 Ni 10 Be 22.5 with single pulses. J Mater Process Technol 232:34–42. https://doi.org/10.1016/j.jmatprotec.2016.01.023

    Article  Google Scholar 

  172. Williams E, Lavery N (2017) Laser processing of bulk metallic glass: a review. J Mater Process Technol 247:73–91. https://doi.org/10.1016/j.jmatprotec.2017.03.034

    Article  Google Scholar 

  173. Li B, Li ZY, Xiong JG, Xing L, Wang D, Li Y (2006) Laser welding of Zr45Cu48Al7 bulk glassy alloy. J Alloys Compd 413(1-2):118–121. https://doi.org/10.1016/j.jallcom.2005.07.005

    Article  Google Scholar 

Download references

Funding

Funding was provided by the Malaysian Government and the Ministry of Higher Education through the Fundamental Research Grant FRGS/1/2017/TK05/UMP/01/1. Wan Ab Naim WN is the recipient of the Universiti Malaysia Pahang (UMP) Post-Doctoral Fellowship in Research.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the research, writing and reviewing of the paper.

Corresponding authors

Correspondence to Qayyum Halim or Nik Abdullah Nik Mohamed.

Ethics declarations

Competing interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halim, Q., Mohamed, N.A.N., Rejab, M.R.M. et al. Metallic glass properties, processing method and development perspective: a review. Int J Adv Manuf Technol 112, 1231–1258 (2021). https://doi.org/10.1007/s00170-020-06515-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-06515-z

Keywords

Navigation