Skip to main content

Advertisement

Log in

Antiferroelectric thick film grown on metal foils with fast discharge speed and excellent energy-storage properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Antiferroelectric (AFE) Pb0.94La0.04Zr0.97Ti0.03O3 (PLZT) thick film was successfully fabricated on nickel foils by using sol–gel method. The film exhibits dense microstructure with low surface roughness and pure perovskite phase. It displays high dielectric constant of 433 at 100 kHz and room temperature, which is 28% larger than that on traditional silicon substrate. Calculated by polarization-field (P–E) hysteresis loop, the recoverable energy-storage density (Wrec) of 18.4 J/cm3 and the efficiency (Ƞ) value of 54% at 1400 kV/cm are obtained in the thick film. Measured by resistance–inductance–capacitance (RLC) circuit, the maximum pulsed discharge energy-storage density (Wdis) of 12.4 J/cm3 is found at the same electric field of 1400 kV/cm. Moreover, 90% of the energy is released in a short time of about 84 ns, displaying super-fast discharging characteristic. The AFE film with high discharge energy-storage density and fast discharge time provides strong potential for the application in modern electronics and electrical power systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. I. Burn, D.M. Smyth, J. Mater. Sci. 7(3), 339–343 (1972)

    Article  CAS  Google Scholar 

  2. K. Yamakawa, S. Trolier-McKinstry, J.P. Dougherty, S.B. Krupanidhi, Appl. Phys. Lett. 67(14), 2014–2016 (1995)

    Article  CAS  Google Scholar 

  3. K. Uchiyama, A. Kasamatsu, Y. Otani, T. Shiosaki, Jpn. J. Appl. Phys. 46(46), 244–246 (2007)

    Article  Google Scholar 

  4. M.S. Mirshekarloo, K. Yao, T. Sritharan, Appl. Phys. Lett. 97(14), 142902 (2010)

    Article  Google Scholar 

  5. Y. Li, W.-Q. Cao, J. Yuan, D.-W. Wang, M.-S. Cao, J. Mater. Chem. C 3, 9276–9282 (2015)

    Article  CAS  Google Scholar 

  6. G. Zhang, D. Zhu, X. Zhang, L. Zhang, J. Yi, B. Xie, Y. Zeng, Q. Li, Q. Wang, S. Jiang, S. Zhang, J. Am. Ceram. Soc. 98(4), 1175–1181 (2015)

    Article  CAS  Google Scholar 

  7. X. Hao, J. Zhai, L.B. Kong, Z. Xu, Prog. Mater Sci. 63(8), 1–57 (2014)

    Article  CAS  Google Scholar 

  8. Z. Xu, J. Zhai, W.-H. Chan, H. Chen, Appl. Phys. Lett. 88(13), 132908 (2006)

    Article  Google Scholar 

  9. H. Pan, Y. Zeng, Y. Shen, Y.H. Lin, C.W. Nan, J. Appl. Phys. 119(12), 5 (2016)

    Google Scholar 

  10. M.D. Losego, L.H. Jimison, J.F. Ihlefeld, J.P. Maria, Appl. Phys. Lett. 86(17), 3 (2005)

    Article  Google Scholar 

  11. A.I. Kingon, S. Srinivasan, Nat. Mater. 4(3), 233 (2005)

    Article  CAS  Google Scholar 

  12. B. Ma, S. Tong, M. Narayanan, S. Liu, S. Chao, U. Balachandran, Mater. Res. Bull. 46(7), 24–29 (2011)

    Article  CAS  Google Scholar 

  13. B. Ma, D.-K. Kwon, M. Narayanan, U. Balachandran, J. Phys. D Appl. Phys. 41(20), 205003 (2008)

    Article  Google Scholar 

  14. H.J. Lee, S.S. Won, K.H. Cho, C.K. Han, N. Mostovych, A.I. Kingon, S.-H. Kim, H.Y. Lee, Appl. Phys. Lett. 112(9), 092901 (2018)

    Article  Google Scholar 

  15. P. Li, J. Zhai, B. Shen, W. Li, H. Zeng, K. Zhao, J. Eur. Ceram. Soc. 37(10), 3319–3327 (2017)

    Article  CAS  Google Scholar 

  16. H. Zhang, X. Chen, F. Cao, G. Wang, X. Dong, Z. Hu, T. Du, J. Am. Ceram. Soc. 93(12), 4015–4017 (2010)

    Article  CAS  Google Scholar 

  17. R. Xu, Z. Xu, Y. Feng, H. He, J. Tian, K. Yu, Ceram. Int. 42(7), 9094–9099 (2016)

    Article  CAS  Google Scholar 

  18. K. Yang, J. Liu, B. Shen, J. Zhai, H. Wang, Mater. Sci. Eng. 223, 178–184 (2017)

    Article  Google Scholar 

  19. C. Xu, Z. Liu, X. Chen, S. Yan, F. Cao, X. Dong, G. Wang, J. Appl. Phys. 120(7), 074107 (2016)

    Article  Google Scholar 

  20. Y. Li, N. Sun, X. Li, J. Du, L. Chen, H. Gao, X. Hao, M. Cao, Acta Mater. 146, 202–210 (2018)

    Article  CAS  Google Scholar 

  21. X. Hao, J. Zhai, X. Yao, J. Am. Ceram. Soc. 92(5), 1133–1135 (2009)

    Article  CAS  Google Scholar 

  22. F. Li, M. Zhou, J. Zhai, B. Shen, H. Zeng, J. Eur. Ceram. Soc. 38(14), 4646–4652 (2018)

    Article  CAS  Google Scholar 

  23. J. Wang, N. Sun, Y. Li, Q. Zhang, X. Hao, X. Chou, Ceram. Int. 43(10), 7804–7809 (2017)

    Article  CAS  Google Scholar 

  24. D. Wang, Z. Fan, D. Zhou, A. Khesro, S. Murakami, A. Feteira, Q. Zhao, X. Tan, I.M. Reaney, J. Mater. Chem. A 6(9), 4133–4144 (2018)

    Article  CAS  Google Scholar 

  25. J.Y. Yang, H.Y. Zhou, X.L. Zhu, X.M. Chen, J. Am. Ceram. Soc. 00, 1–9 (2018)

    Google Scholar 

  26. Z. Li, J. Wu, D. Xiao, J. Zhu, W. Wu, Acta Mater. 103, 243–251 (2016)

    Article  CAS  Google Scholar 

  27. T. Zhang, W. Li, Y. Zhao, Y. Yu, W. Fei, Adv. Funct. Mater. 28(10), 1706211 (2018)

    Article  Google Scholar 

  28. J. Wu, J. Wang, D. Xiao, J. Zhu, ACS Appl. Mater. Inter. 3(7), 2504–2511 (2011)

    Article  CAS  Google Scholar 

  29. O. Blanco, E. Martínez, J. Heiras, J. Siqueiros, A.G. Castellanos-Guzmán, Microelectron. J. 36, 543–545 (2005)

    Article  CAS  Google Scholar 

  30. Z. Pan, L. Yao, J. Zhai, D. Fu, B. Shen, H. Wang, ACS Appl. Mater. Inter. 9(4), 4024–4033 (2017)

    Article  CAS  Google Scholar 

  31. C.W. Ahn, G. Amarsanaa, S.S. Won, S.A. Chae, D.S. Lee, I.W. Kim, ACS Appl. Mater. Interfaces. 7(48), 26381–26386 (2015)

    Article  CAS  Google Scholar 

  32. B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin, Q. Wang, F. Bauer, Q.M. Zhang, Science 313(5785), 334–336 (2006)

    Article  CAS  Google Scholar 

  33. C.K. Campbell, J.D. van Wyk, R.G. Chen, IEEE Trans Compon. Packag. Technol. 25(2), 211–216 (2002)

    Article  Google Scholar 

  34. X.F. Chen, X.L. Dong, G.P. Wang, Y.L. Wang, Ferroelectrics 363(1), 56–63 (2008)

    Article  CAS  Google Scholar 

  35. S. Xiao, S. Xiu, B. Shen, J. Zhai, J. Am. Ceram. Soc. 36(16), 4071–4076 (2016)

    Article  CAS  Google Scholar 

  36. G. Liu, L. Zhang, Q. Wu, Z. Wang, Y. Li, D. Li, H. Liu, Y. Yan, J. Mater. Sci. 29(21), 18859–18867 (2018)

    CAS  Google Scholar 

  37. J. Shen, X. Wang, T. Yang, H. Wang, J. Wei, J. Alloys Compd. 721, 191–198 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to acknowledge the financial support from the Natural Science Foundation of Inner Mongolia (2015JQ04, 2017BS0503), the Natural Science Foundation of China (51702169), the Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region (NMGIRT-A1605), the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region, the Grassland Talent Plan of Inner Mongolia Autonomous Region, the Innovation Guide Fund of Baotou (CX2017-58) and the Innovation Fund of Inner Mongolia University of Science and Technology (2014QNGG01, 2016QDL-S01, 2016QDL-B03), Fundamental Research Funds for the Central Universities (2232018D-39), and the Innovation Guide Fund for Science and Technology of Inner Mongolia Autonomous Region (KCBJ2018034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xihong Hao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, Y., Du, J. et al. Antiferroelectric thick film grown on metal foils with fast discharge speed and excellent energy-storage properties. J Mater Sci: Mater Electron 30, 11945–11951 (2019). https://doi.org/10.1007/s10854-019-01545-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01545-0

Navigation